Files
moonlight-qt/app/streaming/video/ffmpeg-renderers/drm.cpp

1993 lines
76 KiB
C++

// mmap64() for 32-bit off_t systems
#ifndef _LARGEFILE64_SOURCE
#define _LARGEFILE64_SOURCE 1
#endif
#include "drm.h"
#include "utils.h"
extern "C" {
#include <libavutil/hwcontext_drm.h>
#include <libavutil/pixdesc.h>
}
#include <libdrm/drm_fourcc.h>
// Special Rockchip type
#ifndef DRM_FORMAT_NA12
#define DRM_FORMAT_NA12 fourcc_code('N', 'A', '1', '2')
#endif
// Same as NA12 but upstreamed
#ifndef DRM_FORMAT_NV15
#define DRM_FORMAT_NV15 fourcc_code('N', 'V', '1', '5')
#endif
// Same as NV15 but non-subsampled
#ifndef DRM_FORMAT_NV30
#define DRM_FORMAT_NV30 fourcc_code('N', 'V', '3', '0')
#endif
// Special Raspberry Pi type (upstreamed)
#ifndef DRM_FORMAT_P030
#define DRM_FORMAT_P030 fourcc_code('P', '0', '3', '0')
#endif
// Regular P010 (not present in some old libdrm headers)
#ifndef DRM_FORMAT_P010
#define DRM_FORMAT_P010 fourcc_code('P', '0', '1', '0')
#endif
// Upstreamed fully-planar YUV444 10-bit
#ifndef DRM_FORMAT_Q410
#define DRM_FORMAT_Q410 fourcc_code('Q', '4', '1', '0')
#endif
// Upstreamed packed YUV444 10-bit
#ifndef DRM_FORMAT_Y410
#define DRM_FORMAT_Y410 fourcc_code('Y', '4', '1', '0')
#endif
// Upstreamed packed YUV444 8-bit
#ifndef DRM_FORMAT_XYUV8888
#define DRM_FORMAT_XYUV8888 fourcc_code('X', 'Y', 'U', 'V')
#endif
// Upstreamed modifier macros (5.16+)
#ifndef fourcc_mod_get_vendor
#define fourcc_mod_get_vendor(modifier) (((modifier) >> 56) & 0xff)
#endif
#ifndef fourcc_mod_is_vendor
#define fourcc_mod_is_vendor(modifier, vendor) \
(fourcc_mod_get_vendor(modifier) == DRM_FORMAT_MOD_VENDOR_## vendor)
#endif
#include <unistd.h>
#include <fcntl.h>
#include <string.h>
#include <sys/mman.h>
#include "streaming/streamutils.h"
#include "streaming/session.h"
#include <Limelight.h>
#include <map>
// This map is used to lookup characteristics of a given DRM format
//
// All DRM formats that we want to try when selecting a plane must
// be listed here.
static const std::map<uint32_t, AVPixelFormat> k_DrmToAvFormatMap
{
{DRM_FORMAT_NV12, AV_PIX_FMT_NV12},
{DRM_FORMAT_NV21, AV_PIX_FMT_NV21},
{DRM_FORMAT_P010, AV_PIX_FMT_P010LE},
{DRM_FORMAT_YUV420, AV_PIX_FMT_YUV420P},
#if LIBAVUTIL_VERSION_INT >= AV_VERSION_INT(56, 27, 100)
{DRM_FORMAT_NV24, AV_PIX_FMT_NV24},
{DRM_FORMAT_NV42, AV_PIX_FMT_NV42},
#endif
{DRM_FORMAT_YUV444, AV_PIX_FMT_YUV444P},
{DRM_FORMAT_Q410, AV_PIX_FMT_YUV444P10LE},
#if LIBAVUTIL_VERSION_INT >= AV_VERSION_INT(57, 34, 100)
{DRM_FORMAT_XYUV8888, AV_PIX_FMT_VUYX},
#endif
#if LIBAVUTIL_VERSION_INT >= AV_VERSION_INT(57, 36, 100)
{DRM_FORMAT_Y410, AV_PIX_FMT_XV30LE},
#endif
// These mappings are lies, but they're close enough for our purposes.
//
// We don't support dumb buffers with these formats, so they just need
// to have accurate bit depth and chroma subsampling values.
{DRM_FORMAT_NA12, AV_PIX_FMT_P010LE},
{DRM_FORMAT_NV15, AV_PIX_FMT_P010LE},
{DRM_FORMAT_P030, AV_PIX_FMT_P010LE},
#if LIBAVUTIL_VERSION_INT >= AV_VERSION_INT(57, 9, 100)
{DRM_FORMAT_NV30, AV_PIX_FMT_P410LE},
#endif
};
// This map is used to determine the required DRM format for dumb buffer upload.
//
// AV pixel formats in this list must have exactly one valid linear DRM format.
static const std::map<AVPixelFormat, uint32_t> k_AvToDrmFormatMap
{
{AV_PIX_FMT_NV12, DRM_FORMAT_NV12},
{AV_PIX_FMT_NV21, DRM_FORMAT_NV21},
{AV_PIX_FMT_P010LE, DRM_FORMAT_P010},
{AV_PIX_FMT_YUV420P, DRM_FORMAT_YUV420},
{AV_PIX_FMT_YUVJ420P, DRM_FORMAT_YUV420},
#if LIBAVUTIL_VERSION_INT >= AV_VERSION_INT(56, 27, 100)
{AV_PIX_FMT_NV24, DRM_FORMAT_NV24},
{AV_PIX_FMT_NV42, DRM_FORMAT_NV42},
#endif
{AV_PIX_FMT_YUV444P, DRM_FORMAT_YUV444},
{AV_PIX_FMT_YUVJ444P, DRM_FORMAT_YUV444},
{AV_PIX_FMT_YUV444P10LE, DRM_FORMAT_Q410},
#if LIBAVUTIL_VERSION_INT >= AV_VERSION_INT(57, 34, 100)
{AV_PIX_FMT_VUYX, DRM_FORMAT_XYUV8888},
#endif
#if LIBAVUTIL_VERSION_INT >= AV_VERSION_INT(57, 36, 100)
{AV_PIX_FMT_XV30LE, DRM_FORMAT_Y410},
#endif
};
DrmRenderer::DrmRenderer(AVHWDeviceType hwDeviceType, IFFmpegRenderer *backendRenderer)
: IFFmpegRenderer(RendererType::DRM),
m_BackendRenderer(backendRenderer),
m_DrmPrimeBackend(backendRenderer && backendRenderer->canExportDrmPrime()),
m_HwDeviceType(hwDeviceType),
m_HwContext(nullptr),
m_DrmFd(-1),
m_DrmIsMaster(false),
m_DrmStateModified(false),
m_DrmSupportsModifiers(false),
m_MustCloseDrmFd(false),
m_SupportsDirectRendering(false),
m_VideoFormat(0),
m_OverlayCompositionSurface(nullptr),
m_OverlayRects{},
m_Version(nullptr),
m_HdrOutputMetadataBlobId(0),
m_OutputRect{},
m_SwFrameMapper(this),
m_CurrentSwFrameIdx(0)
#ifdef HAVE_EGL
, m_EglImageFactory(this)
#endif
{
SDL_zero(m_SwFrame);
}
DrmRenderer::~DrmRenderer()
{
// If we have a composition surface, unmap it before disabling planes
if (m_OverlayCompositionSurface) {
munmap(m_OverlayCompositionSurface->pixels, (uintptr_t)m_OverlayCompositionSurface->userdata);
SDL_FreeSurface(m_OverlayCompositionSurface);
}
if (m_DrmStateModified) {
// Ensure we're out of HDR mode
setHdrMode(false);
// Deactivate all planes
m_PropSetter.disablePlane(m_VideoPlane);
for (int i = 0; i < Overlay::OverlayMax; i++) {
m_PropSetter.disablePlane(m_OverlayPlanes[i]);
}
// Revert our changes from prepareToRender()
if (auto prop = m_Connector.property("content type")) {
m_PropSetter.set(*prop, prop->initialValue());
}
if (auto prop = m_Crtc.property("VRR_ENABLED")) {
m_PropSetter.set(*prop, prop->initialValue());
}
if (auto prop = m_Connector.property("max bpc")) {
m_PropSetter.set(*prop, prop->initialValue());
}
if (auto zpos = m_VideoPlane.property("zpos"); zpos && !zpos->isImmutable()) {
m_PropSetter.set(*zpos, zpos->initialValue());
}
for (int i = 0; i < Overlay::OverlayMax; i++) {
if (auto zpos = m_OverlayPlanes[i].property("zpos"); zpos && !zpos->isImmutable()) {
m_PropSetter.set(*zpos, zpos->initialValue());
}
}
for (auto &plane : m_UnusedActivePlanes) {
SDL_LogInfo(SDL_LOG_CATEGORY_APPLICATION,
"Restoring previously active plane: %u",
plane.second.objectId());
m_PropSetter.restoreToInitial(plane.second);
}
m_PropSetter.apply();
}
for (int i = 0; i < k_SwFrameCount; i++) {
if (m_SwFrame[i].primeFd) {
close(m_SwFrame[i].primeFd);
}
if (m_SwFrame[i].mapping) {
munmap(m_SwFrame[i].mapping, m_SwFrame[i].size);
}
if (m_SwFrame[i].handle) {
struct drm_mode_destroy_dumb destroyBuf = {};
destroyBuf.handle = m_SwFrame[i].handle;
drmIoctl(m_DrmFd, DRM_IOCTL_MODE_DESTROY_DUMB, &destroyBuf);
}
}
if (m_HdrOutputMetadataBlobId != 0) {
drmModeDestroyPropertyBlob(m_DrmFd, m_HdrOutputMetadataBlobId);
}
if (m_Version != nullptr) {
drmFreeVersion(m_Version);
}
if (m_HwContext != nullptr) {
av_buffer_unref(&m_HwContext);
}
if (m_MustCloseDrmFd && m_DrmFd != -1) {
close(m_DrmFd);
}
}
bool DrmRenderer::prepareDecoderContext(AVCodecContext* context, AVDictionary** options)
{
// The out-of-tree LibreELEC patches use this option to control the type of the V4L2
// buffers that we get back. We only support NV12 buffers now.
if(strstr(context->codec->name, "_v4l2") != NULL)
av_dict_set_int(options, "pixel_format", AV_PIX_FMT_NV12, 0);
// This option controls the pixel format for the h264_omx and hevc_omx decoders
// used by the JH7110 multimedia stack. This decoder gives us software frames,
// so we need a format supported by our DRM dumb buffer code (NV12/NV21/P010).
//
// https://doc-en.rvspace.org/VisionFive2/DG_Multimedia/JH7110_SDK/h264_omx.html
// https://doc-en.rvspace.org/VisionFive2/DG_Multimedia/JH7110_SDK/hevc_omx.html
av_dict_set(options, "omx_pix_fmt", "nv12", 0);
// This option controls the pixel format for the h264_omx and hevc_omx decoders
// used on the TH1520 running RevyOS. The decoder will give us software frames
// by default but we can opt in for DRM_PRIME frames to dramatically improve
// streaming performance.
av_dict_set_int(options, "drm_prime", 1, 0);
if (m_HwDeviceType != AV_HWDEVICE_TYPE_NONE) {
context->hw_device_ctx = av_buffer_ref(m_HwContext);
}
SDL_LogInfo(SDL_LOG_CATEGORY_APPLICATION,
"Using DRM renderer");
return true;
}
bool DrmRenderer::prepareDecoderContextInGetFormat(AVCodecContext*, AVPixelFormat)
{
#ifdef HAVE_EGL
// The surface pool is being reset, so clear the cached EGLImages
m_EglImageFactory.resetCache();
#endif
return true;
}
void DrmRenderer::prepareToRender()
{
// Retake DRM master if we dropped it earlier
drmSetMaster(m_DrmFd);
// Create a dummy renderer to force SDL to complete the modesetting
// operation that the KMSDRM backend keeps pending until the next
// time we swap buffers. We have to do this before we enumerate
// CRTC modes below.
SDL_Renderer* renderer = SDL_CreateRenderer(m_Window, -1, SDL_RENDERER_SOFTWARE);
if (renderer != nullptr) {
// SDL_CreateRenderer() can end up having to recreate our window (SDL_RecreateWindow())
// to ensure it's compatible with the renderer's OpenGL context. If that happens, we
// can get spurious SDL_WINDOWEVENT events that will cause us to (again) recreate our
// renderer. This can lead to an infinite to renderer recreation, so discard all
// SDL_WINDOWEVENT events after SDL_CreateRenderer().
Session* session = Session::get();
if (session != nullptr) {
// If we get here during a session, we need to synchronize with the event loop
// to ensure we don't drop any important events.
session->flushWindowEvents();
}
else {
// If we get here prior to the start of a session, just pump and flush ourselves.
SDL_PumpEvents();
SDL_FlushEvent(SDL_WINDOWEVENT);
}
SDL_SetRenderDrawColor(renderer, 0, 0, 0, SDL_ALPHA_OPAQUE);
SDL_RenderClear(renderer);
SDL_RenderPresent(renderer);
SDL_DestroyRenderer(renderer);
}
else {
SDL_LogError(SDL_LOG_CATEGORY_APPLICATION,
"SDL_CreateRenderer() failed: %s",
SDL_GetError());
}
// Set our DRM client caps again. SDL 3.4+ will disable these
// when dropping master if it's using atomic itself.
drmSetClientCap(m_DrmFd, DRM_CLIENT_CAP_UNIVERSAL_PLANES, 1);
if (m_PropSetter.isAtomic()) {
drmSetClientCap(m_DrmFd, DRM_CLIENT_CAP_ATOMIC, 1);
}
// Set the output rect to match the new CRTC size after modesetting
m_OutputRect.x = m_OutputRect.y = 0;
drmModeCrtc* crtc = drmModeGetCrtc(m_DrmFd, m_Crtc.objectId());
if (crtc != nullptr) {
SDL_LogInfo(SDL_LOG_CATEGORY_APPLICATION,
"CRTC size after modesetting: %ux%u",
crtc->width,
crtc->height);
m_OutputRect.w = crtc->width;
m_OutputRect.h = crtc->height;
drmModeFreeCrtc(crtc);
}
else {
SDL_LogError(SDL_LOG_CATEGORY_APPLICATION,
"drmModeGetCrtc() failed: %d",
errno);
SDL_GetWindowSize(m_Window, &m_OutputRect.w, &m_OutputRect.h);
SDL_LogWarn(SDL_LOG_CATEGORY_APPLICATION,
"Guessing CRTC is window size: %dx%d",
m_OutputRect.w,
m_OutputRect.h);
}
// Set HDMI content type to hopefully enable ALLM
if (auto prop = m_Connector.property("content type")) {
QString contentType = qgetenv("DRM_CONTENT_TYPE");
if (contentType.isEmpty()) {
contentType = "Game";
}
m_PropSetter.set(*prop, contentType.toStdString());
}
// Enable VRR if V-sync is off by default
if (auto prop = m_Crtc.property("VRR_ENABLED")) {
bool enableVrr;
if (!Utils::getEnvironmentVariableOverride("DRM_ENABLE_VRR", &enableVrr)) {
enableVrr = !m_Vsync;
}
auto range = prop->range();
m_PropSetter.set(*prop, std::clamp<uint64_t>(enableVrr ? 1 : 0, range.first, range.second));
}
if (auto prop = m_Connector.property("max bpc")) {
int maxBpc;
// By default, set max bpc to 10 if we're streaming 10-bit content and it's currently
// less than that value. If it's higher than 10 or we're not streaming 10-bit content,
// we leave it alone.
if (!Utils::getEnvironmentVariableOverride("DRM_MAX_BPC", &maxBpc)) {
maxBpc = (prop->initialValue() < 10 && (m_VideoFormat & VIDEO_FORMAT_MASK_10BIT)) ? 10 : 0;
}
if (maxBpc > 0) {
auto range = prop->range();
m_PropSetter.set(*prop, std::clamp<uint64_t>(maxBpc, range.first, range.second));
}
}
// Adjust zpos values if needed
if (auto zpos = m_VideoPlane.property("zpos"); zpos && m_VideoPlaneZpos != zpos->initialValue()) {
SDL_LogInfo(SDL_LOG_CATEGORY_APPLICATION,
"Moving video plane to zpos: %" PRIu64,
m_VideoPlaneZpos);
m_PropSetter.set(*zpos, m_VideoPlaneZpos, false);
}
for (int i = 0; i < Overlay::OverlayMax; i++) {
if (auto zpos = m_OverlayPlanes[i].property("zpos")) {
// This may result in multiple overlays having the same zpos, which
// means undefined ordering between the planes, but that's fine.
// The planes should never overlap anyway.
if (!zpos->isImmutable() && zpos->initialValue() <= m_VideoPlaneZpos) {
auto zposRange = zpos->range();
uint64_t newZpos = std::clamp(m_VideoPlaneZpos + 1, zposRange.first, zposRange.second);
SDL_LogInfo(SDL_LOG_CATEGORY_APPLICATION,
"Moving overlay plane %u to zpos: %" PRIu64,
i,
newZpos);
m_PropSetter.set(*zpos, newZpos, false);
}
}
}
// Disable all other active planes in atomic mode
for (auto &plane : m_UnusedActivePlanes) {
SDL_LogInfo(SDL_LOG_CATEGORY_APPLICATION,
"Disabling unused plane: %u",
plane.second.objectId());
m_PropSetter.disablePlane(plane.second);
}
// Enter overlay composition mode if we don't have enough planes to display all the
// possible overlays we might need, but we have at least one available
if (m_OverlayPlanes[0].isValid() && !m_OverlayPlanes[Overlay::OverlayMax - 1].isValid()) {
enterOverlayCompositionMode();
}
m_PropSetter.apply();
// We've now changed state that must be restored
m_DrmStateModified = true;
}
bool DrmRenderer::initialize(PDECODER_PARAMETERS params)
{
int i;
m_Window = params->window;
m_VideoFormat = params->videoFormat;
m_Vsync = params->enableVsync;
m_SwFrameMapper.setVideoFormat(params->videoFormat);
// Try to get the FD that we're sharing with SDL
m_DrmFd = StreamUtils::getDrmFdForWindow(m_Window, &m_MustCloseDrmFd);
if (m_DrmFd >= 0) {
// If we got a DRM FD for the window, we can render to it
m_DrmIsMaster = true;
// If we just opened a new FD, let's drop master on it
// so SDL can take master for Vulkan rendering. We'll
// regrab master later if we end up direct rendering.
if (m_MustCloseDrmFd) {
drmDropMaster(m_DrmFd);
}
}
else {
// Try to open any DRM render node
m_DrmFd = StreamUtils::getDrmFd(true);
if (m_DrmFd >= 0) {
// Drop master in case we somehow got a primary node
drmDropMaster(m_DrmFd);
// This is a new FD that we must close
m_MustCloseDrmFd = true;
}
}
// Create the device context first because it is needed whether we can
// actually use direct rendering or not.
if (m_HwDeviceType == AV_HWDEVICE_TYPE_DRM) {
// A real DRM FD is required for DRM-backed hwaccels
if (m_DrmFd < 0) {
SDL_LogError(SDL_LOG_CATEGORY_APPLICATION,
"Failed to open DRM device: %d",
errno);
return false;
}
m_HwContext = av_hwdevice_ctx_alloc(AV_HWDEVICE_TYPE_DRM);
if (m_HwContext == nullptr) {
SDL_LogError(SDL_LOG_CATEGORY_APPLICATION,
"av_hwdevice_ctx_alloc(DRM) failed");
return false;
}
AVHWDeviceContext* deviceContext = (AVHWDeviceContext*)m_HwContext->data;
AVDRMDeviceContext* drmDeviceContext = (AVDRMDeviceContext*)deviceContext->hwctx;
drmDeviceContext->fd = m_DrmFd;
int err = av_hwdevice_ctx_init(m_HwContext);
if (err < 0) {
SDL_LogError(SDL_LOG_CATEGORY_APPLICATION,
"av_hwdevice_ctx_init(DRM) failed: %d",
err);
return false;
}
}
else if (m_HwDeviceType != AV_HWDEVICE_TYPE_NONE) {
// We got some other non-DRM hwaccel that outputs DRM_PRIME frames.
// Create it with default parameters and hope for the best.
int err = av_hwdevice_ctx_create(&m_HwContext, m_HwDeviceType, nullptr, nullptr, 0);
if (err < 0) {
SDL_LogError(SDL_LOG_CATEGORY_APPLICATION,
"av_hwdevice_ctx_create(%u) failed: %d",
m_HwDeviceType,
err);
return false;
}
}
// Still return true if we fail to initialize DRM direct rendering
// stuff, since we have EGLRenderer and SDLRenderer that we can use
// for indirect rendering. Our FFmpeg renderer selection code will
// handle the case where those also fail to render the test frame.
// If we are just acting as a frontend renderer (m_BackendRenderer
// == nullptr), we want to fail if we can't render directly since
// that's the whole point it's trying to use us for.
const bool DIRECT_RENDERING_INIT_FAILED = (m_BackendRenderer == nullptr);
if (m_DrmFd < 0) {
SDL_LogInfo(SDL_LOG_CATEGORY_APPLICATION,
"Direct rendering via DRM is unavailable due to lack of DRM devices");
return DIRECT_RENDERING_INIT_FAILED;
}
// Fetch version details about the DRM driver to use later
m_Version = drmGetVersion(m_DrmFd);
if (m_Version == nullptr) {
SDL_LogError(SDL_LOG_CATEGORY_APPLICATION,
"drmGetVersion() failed: %d",
errno);
return DIRECT_RENDERING_INIT_FAILED;
}
SDL_LogInfo(SDL_LOG_CATEGORY_APPLICATION,
"GPU driver: %s", m_Version->name);
// If we're not sharing the DRM FD with SDL, that means we don't
// have DRM master, so we can't call drmModeSetPlane(). We can
// use EGLRenderer or SDLRenderer to render in this situation.
if (!m_DrmIsMaster) {
SDL_LogInfo(SDL_LOG_CATEGORY_APPLICATION,
"Direct rendering via DRM is disabled");
return DIRECT_RENDERING_INIT_FAILED;
}
drmModeRes* resources = drmModeGetResources(m_DrmFd);
if (resources == nullptr) {
SDL_LogError(SDL_LOG_CATEGORY_APPLICATION,
"drmModeGetResources() failed: %d",
errno);
return DIRECT_RENDERING_INIT_FAILED;
}
// Look for a connected connector and get the associated encoder
for (i = 0; i < resources->count_connectors && !m_Encoder.isValid(); i++) {
drmModeConnector* connector = drmModeGetConnector(m_DrmFd, resources->connectors[i]);
if (connector != nullptr) {
if (connector->connection == DRM_MODE_CONNECTED && connector->count_modes > 0) {
m_Connector.load(m_DrmFd, resources->connectors[i], DRM_MODE_OBJECT_CONNECTOR);
m_Encoder.load(m_DrmFd, connector->encoder_id, DRM_MODE_OBJECT_ENCODER);
}
drmModeFreeConnector(connector);
}
}
if (!m_Encoder.isValid()) {
SDL_LogError(SDL_LOG_CATEGORY_APPLICATION,
"No connected displays found!");
drmModeFreeResources(resources);
return DIRECT_RENDERING_INIT_FAILED;
}
// Now find the CRTC from the encoder
for (i = 0; i < resources->count_encoders && !m_Crtc.isValid(); i++) {
drmModeEncoder* encoder = drmModeGetEncoder(m_DrmFd, resources->encoders[i]);
if (encoder != nullptr) {
if (encoder->encoder_id == m_Encoder.objectId()) {
m_Crtc.load(m_DrmFd, encoder->crtc_id, DRM_MODE_OBJECT_CRTC);
}
drmModeFreeEncoder(encoder);
}
}
if (!m_Crtc.isValid()) {
SDL_LogError(SDL_LOG_CATEGORY_APPLICATION,
"DRM encoder not found!");
drmModeFreeResources(resources);
return DIRECT_RENDERING_INIT_FAILED;
}
int crtcIndex = -1;
for (int i = 0; i < resources->count_crtcs; i++) {
if (resources->crtcs[i] == m_Crtc.objectId()) {
crtcIndex = i;
break;
}
}
drmModeFreeResources(resources);
if (crtcIndex == -1) {
SDL_LogError(SDL_LOG_CATEGORY_APPLICATION,
"Failed to get CRTC!");
return DIRECT_RENDERING_INIT_FAILED;
}
if (drmSetClientCap(m_DrmFd, DRM_CLIENT_CAP_UNIVERSAL_PLANES, 1)) {
SDL_LogError(SDL_LOG_CATEGORY_APPLICATION,
"Universal planes are not supported!");
return DIRECT_RENDERING_INIT_FAILED;
}
bool atomic;
if (!Utils::getEnvironmentVariableOverride("DRM_ATOMIC", &atomic)) {
// Use atomic by default if available
atomic = true;
}
m_PropSetter.initialize(m_DrmFd, atomic, !params->enableVsync);
drmModePlaneRes* planeRes = drmModeGetPlaneResources(m_DrmFd);
if (planeRes == nullptr) {
SDL_LogError(SDL_LOG_CATEGORY_APPLICATION,
"drmGetPlaneResources() failed: %d",
errno);
return DIRECT_RENDERING_INIT_FAILED;
}
// Find the active plane (if any) on this CRTC with the highest zpos.
// We'll need to use a plane with a equal or greater zpos to be visible,
// or we'll disable the active planes if we're in atomic mode.
std::set<uint64_t> activePlanesZpos;
for (uint32_t i = 0; i < planeRes->count_planes; i++) {
drmModePlane* plane = drmModeGetPlane(m_DrmFd, planeRes->planes[i]);
if (plane != nullptr) {
DrmPropertyMap props { m_DrmFd, planeRes->planes[i], DRM_MODE_OBJECT_PLANE };
if (plane->crtc_id == m_Crtc.objectId()) {
// Don't consider cursor planes when searching for the highest active zpos
uint64_t type = props.property("type")->initialValue();
if (type == DRM_PLANE_TYPE_PRIMARY || type == DRM_PLANE_TYPE_OVERLAY) {
SDL_LogInfo(SDL_LOG_CATEGORY_APPLICATION,
"Plane %u is active on CRTC %u",
plane->plane_id,
plane->crtc_id);
// We can only restore state of planes on atomic
if (m_PropSetter.isAtomic()) {
m_UnusedActivePlanes.try_emplace(planeRes->planes[i], m_DrmFd, planeRes->planes[i], DRM_MODE_OBJECT_PLANE);
}
else if (auto zpos = props.property("zpos")) {
activePlanesZpos.emplace(zpos->initialValue());
}
}
}
drmModeFreePlane(plane);
}
}
// The Spacemit K1 driver is broken and advertises support for NV12/P010
// formats with the linear modifier on all planes, but doesn't actually
// support raw YUV formats on the primary plane. Don't ever use primary
// planes on Spacemit hardware to avoid triggering this bug.
bool allowPrimaryPlane;
if (Utils::getEnvironmentVariableOverride("DRM_ALLOW_PRIMARY_PLANE", &allowPrimaryPlane)) {
SDL_LogWarn(SDL_LOG_CATEGORY_APPLICATION,
"Using DRM_ALLOW_PRIMARY_PLANE to override default plane selection logic");
}
else {
allowPrimaryPlane = strcmp(m_Version->name, "spacemit") != 0;
}
// Some Rockchip have a device tree that defines their only overlay plane
// as a cursor plane, so we provide an override to allow rendering to a
// cursor plane if requested.
// https://github.com/moonlight-stream/moonlight-embedded/pull/882
bool allowCursorPlane;
if (Utils::getEnvironmentVariableOverride("DRM_ALLOW_CURSOR_PLANE", &allowCursorPlane)) {
SDL_LogWarn(SDL_LOG_CATEGORY_APPLICATION,
"Using DRM_ALLOW_CURSOR_PLANE to override default plane selection logic");
}
else {
allowCursorPlane = false;
}
// Find a video plane with the required format to render on
//
// FIXME: We should check the actual DRM format in a real AVFrame rather
// than just assuming it will be a certain hardcoded type like NV12 based
// on the chosen video format.
for (uint32_t i = 0; i < planeRes->count_planes && !m_VideoPlane.isValid(); i++) {
drmModePlane* plane = drmModeGetPlane(m_DrmFd, planeRes->planes[i]);
if (plane != nullptr) {
// If the plane can't be used on our CRTC, don't consider it further
if (!(plane->possible_crtcs & (1 << crtcIndex))) {
drmModeFreePlane(plane);
continue;
}
{
// Allow the user to override the plane selection logic
uint32_t userPlane;
if (Utils::getEnvironmentVariableOverride("DRM_VIDEO_PLANE", &userPlane) && userPlane != planeRes->planes[i]) {
drmModeFreePlane(plane);
continue;
}
}
// We don't check plane->crtc_id here because we want to be able to reuse the primary plane
// that may owned by Qt and in use on a CRTC prior to us taking over DRM master. When we give
// control back to Qt, it will repopulate the plane with the FB it owns and render as normal.
// Validate that the candidate plane supports our pixel format
m_SupportedVideoPlaneFormats.clear();
for (uint32_t j = 0; j < plane->count_formats; j++) {
if (drmFormatMatchesVideoFormat(plane->formats[j], m_VideoFormat)) {
m_SupportedVideoPlaneFormats.emplace(plane->formats[j]);
}
}
if (m_SupportedVideoPlaneFormats.empty()) {
drmModeFreePlane(plane);
continue;
}
// Check if the plane is one that we're allowed to use
DrmPropertyMap props { m_DrmFd, planeRes->planes[i], DRM_MODE_OBJECT_PLANE };
if (auto type = props.property("type");
type->initialValue() != DRM_PLANE_TYPE_OVERLAY &&
(type->initialValue() != DRM_PLANE_TYPE_PRIMARY || !allowPrimaryPlane) &&
(type->initialValue() != DRM_PLANE_TYPE_CURSOR || !allowCursorPlane)) {
drmModeFreePlane(plane);
continue;
}
// If this plane has a zpos property and it's lower (further from user) than
// the highest active plane we found, avoid this plane unless we can adjust
// the zpos property to an acceptable value.
//
// Note: zpos is not a required property, but if any plane has it, all planes must.
auto zpos = props.property("zpos");
if (zpos) {
// If the zpos property is immutable, then we're stuck with whatever it is
if (zpos->isImmutable()) {
if (!activePlanesZpos.empty() && zpos->initialValue() < *activePlanesZpos.crbegin()) {
// This plane is too low to be visible
drmModeFreePlane(plane);
continue;
}
else {
m_VideoPlaneZpos = zpos->initialValue();
}
}
else {
auto zposRange = zpos->range();
uint64_t lowestAcceptableZpos;
// No active planes, so we can use the minimum zpos
auto zposIt = activePlanesZpos.crbegin();
if (zposIt == activePlanesZpos.crend()) {
lowestAcceptableZpos = zposRange.first;
}
else if (*zposIt == zpos->initialValue()) {
// The highest active zpos is our current plane, so try the next one
if (++zposIt == activePlanesZpos.crend()) {
// Our plane is the only active, so we can use the minimum zpos
lowestAcceptableZpos = zposRange.first;
}
else {
lowestAcceptableZpos = *zposIt + 1;
}
}
else {
// The highest active zpos is some other plane that isn't ours
lowestAcceptableZpos = *zposIt + 1;
}
m_VideoPlaneZpos = std::clamp(lowestAcceptableZpos, zposRange.first, zposRange.second);
}
}
else {
m_VideoPlaneZpos = 0;
}
SDL_assert(!m_VideoPlane.isValid());
m_VideoPlane.load(m_DrmFd, plane->plane_id, DRM_MODE_OBJECT_PLANE);
SDL_LogInfo(SDL_LOG_CATEGORY_APPLICATION, "Selected plane %u for video", plane->plane_id);
m_UnusedActivePlanes.erase(plane->plane_id);
drmModeFreePlane(plane);
}
}
if (!m_VideoPlane.isValid()) {
SDL_LogError(SDL_LOG_CATEGORY_APPLICATION,
"Failed to find suitable video plane!");
drmModeFreePlaneResources(planeRes);
return DIRECT_RENDERING_INIT_FAILED;
}
// Find overlay planes when using the atomic API
int overlayIndex = 0;
for (uint32_t i = 0; i < planeRes->count_planes && overlayIndex < Overlay::OverlayMax && m_PropSetter.isAtomic(); i++) {
drmModePlane* plane = drmModeGetPlane(m_DrmFd, planeRes->planes[i]);
if (plane != nullptr) {
// If the plane can't be used on our CRTC, don't consider it further
if (!(plane->possible_crtcs & (1 << crtcIndex))) {
drmModeFreePlane(plane);
continue;
}
{
// Allow the user to override the plane selection logic
uint32_t userPlane;
QString optionVarName = QString("DRM_OVERLAY_PLANE%1").arg(overlayIndex);
if (Utils::getEnvironmentVariableOverride(optionVarName.toUtf8(), &userPlane) && userPlane != planeRes->planes[i]) {
drmModeFreePlane(plane);
continue;
}
}
DrmPropertyMap props { m_DrmFd, planeRes->planes[i], DRM_MODE_OBJECT_PLANE };
// Only consider overlay or primary planes as valid targets
// The latter might seem strange, but some DRM devices use
// underlays where the YUV-compatible overlay plane resides
// underneath the primary plane. In this case, we will use
// the primary plane as an overlay plane on top of the video.
if (auto type = props.property("type")) {
if (type->initialValue() != DRM_PLANE_TYPE_OVERLAY && type->initialValue() != DRM_PLANE_TYPE_PRIMARY) {
drmModeFreePlane(plane);
continue;
}
}
// The overlay plane must support ARGB8888
bool foundFormat = false;
for (uint32_t j = 0; j < plane->count_formats; j++) {
if (plane->formats[j] == DRM_FORMAT_ARGB8888) {
foundFormat = true;
break;
}
}
if (!foundFormat) {
drmModeFreePlane(plane);
continue;
}
// If this plane has a zpos property and it's lower (further from user) than
// the highest active plane we found, avoid this plane unless we can adjust
// the zpos property to an acceptable value.
//
// Note: zpos is not a required property, but if any plane has it, all planes must.
auto zpos = props.property("zpos");
if (zpos) {
// If the zpos property is immutable, then we're stuck with whatever it is
if (zpos->isImmutable()) {
if (zpos->initialValue() <= m_VideoPlaneZpos) {
// This plane is too low to be visible
drmModeFreePlane(plane);
continue;
}
}
else if (zpos->range().second <= m_VideoPlaneZpos) {
// This plane cannot be raised high enough to be visible
drmModeFreePlane(plane);
continue;
}
}
// Allocate this overlay plane to the next unused overlay slot
SDL_assert(!m_OverlayPlanes[overlayIndex].isValid());
m_OverlayPlanes[overlayIndex++].load(m_DrmFd, plane->plane_id, DRM_MODE_OBJECT_PLANE);
SDL_LogInfo(SDL_LOG_CATEGORY_APPLICATION, "Selected plane %u for overlay %d",
plane->plane_id, overlayIndex);
m_UnusedActivePlanes.erase(plane->plane_id);
drmModeFreePlane(plane);
}
}
drmModeFreePlaneResources(planeRes);
if (!m_PropSetter.isAtomic()) {
SDL_LogWarn(SDL_LOG_CATEGORY_APPLICATION,
"Overlays require DRM atomic support");
}
else if (overlayIndex == 0) {
SDL_LogWarn(SDL_LOG_CATEGORY_APPLICATION,
"Unable to find any suitable overlay planes");
}
else if (overlayIndex < Overlay::OverlayMax) {
SDL_LogWarn(SDL_LOG_CATEGORY_APPLICATION,
"Using overlay composition (%d of %d found)",
overlayIndex,
Overlay::OverlayMax);
}
{
uint64_t val;
if (drmGetCap(m_DrmFd, DRM_CAP_ADDFB2_MODIFIERS, &val) == 0 && val) {
m_DrmSupportsModifiers = true;
}
else {
SDL_LogWarn(SDL_LOG_CATEGORY_APPLICATION,
"FB modifiers are unsupported. Video or overlays may display incorrectly!");
}
}
// If we got this far, we can do direct rendering via the DRM FD.
m_SupportsDirectRendering = true;
return true;
}
enum AVPixelFormat DrmRenderer::getPreferredPixelFormat(int videoFormat)
{
// DRM PRIME buffers, or whatever the backend renderer wants
if (m_BackendRenderer != nullptr) {
return m_BackendRenderer->getPreferredPixelFormat(videoFormat);
}
else {
// We must return this pixel format to ensure it's used with
// v4l2m2m decoders that go through non-hwaccel format selection.
//
// For non-hwaccel decoders that don't support DRM PRIME, ffGetFormat()
// will call isPixelFormatSupported() and pick a supported swformat.
return AV_PIX_FMT_DRM_PRIME;
}
}
bool DrmRenderer::isPixelFormatSupported(int videoFormat, AVPixelFormat pixelFormat) {
if (m_HwDeviceType != AV_HWDEVICE_TYPE_NONE) {
return pixelFormat == AV_PIX_FMT_DRM_PRIME;
}
else if (m_DrmPrimeBackend) {
return m_BackendRenderer->isPixelFormatSupported(videoFormat, pixelFormat);
}
else {
// If we're going to need to map this as a software frame, check
// against the set of formats we support in mapSoftwareFrame().
if (pixelFormat == AV_PIX_FMT_DRM_PRIME) {
// AV_PIX_FMT_DRM_PRIME is always supported
return true;
}
else {
auto avToDrmTuple = k_AvToDrmFormatMap.find(pixelFormat);
if (avToDrmTuple == k_AvToDrmFormatMap.end()) {
return false;
}
// If we've been called after initialize(), use the actual supported plane formats
if (!m_SupportedVideoPlaneFormats.empty()) {
return m_SupportedVideoPlaneFormats.find(avToDrmTuple->second) != m_SupportedVideoPlaneFormats.end();
}
else {
// If we've been called before initialize(), use any valid plane format for our video formats
return drmFormatMatchesVideoFormat(avToDrmTuple->second, videoFormat);
}
}
}
}
int DrmRenderer::getRendererAttributes()
{
int attributes = 0;
// This renderer can only draw in full-screen
attributes |= RENDERER_ATTRIBUTE_FULLSCREEN_ONLY;
// This renderer supports HDR
attributes |= RENDERER_ATTRIBUTE_HDR_SUPPORT;
// This renderer does not buffer any frames in the graphics pipeline
attributes |= RENDERER_ATTRIBUTE_NO_BUFFERING;
#ifdef GL_IS_SLOW
// Restrict streaming resolution to 1080p on the Pi 4 while in the desktop environment.
// EGL performance is extremely poor and just barely hits 1080p60 on Bookworm. This also
// covers the MMAL H.264 case which maxes out at 1080p60 too.
if (!m_SupportsDirectRendering && m_Version &&
(strcmp(m_Version->name, "vc4") == 0 || strcmp(m_Version->name, "v3d") == 0) &&
qgetenv("RPI_ALLOW_EGL_4K") != "1") {
drmDevicePtr device;
if (drmGetDevice(m_DrmFd, &device) == 0) {
if (device->bustype == DRM_BUS_PLATFORM) {
for (int i = 0; device->deviceinfo.platform->compatible[i]; i++) {
QString compatibleId(device->deviceinfo.platform->compatible[i]);
if (compatibleId == "brcm,bcm2835-vc4" || compatibleId == "brcm,bcm2711-vc5" || compatibleId == "brcm,2711-v3d") {
SDL_LogWarn(SDL_LOG_CATEGORY_APPLICATION,
"Streaming resolution is limited to 1080p on the Pi 4 inside the desktop environment!");
SDL_LogWarn(SDL_LOG_CATEGORY_APPLICATION,
"Run Moonlight directly from the console to stream above 1080p resolution!");
attributes |= RENDERER_ATTRIBUTE_1080P_MAX;
break;
}
}
}
drmFreeDevice(&device);
}
}
#endif
return attributes;
}
void DrmRenderer::setHdrMode(bool enabled)
{
if (auto prop = m_Connector.property("Colorspace")) {
if (enabled) {
// Prefer BT2020_YCC to allow chroma subsampling
if (prop->containsValue("BT2020_YCC")) {
m_PropSetter.set(*prop, "BT2020_YCC");
}
else {
m_PropSetter.set(*prop, "BT2020_RGB");
}
}
else {
m_PropSetter.set(*prop, "Default");
}
}
if (auto prop = m_Connector.property("HDR_OUTPUT_METADATA")) {
if (m_HdrOutputMetadataBlobId != 0) {
drmModeDestroyPropertyBlob(m_DrmFd, m_HdrOutputMetadataBlobId);
m_HdrOutputMetadataBlobId = 0;
}
if (enabled) {
DrmDefs::hdr_output_metadata outputMetadata;
SS_HDR_METADATA sunshineHdrMetadata;
// Sunshine will have HDR metadata but GFE will not
if (!LiGetHdrMetadata(&sunshineHdrMetadata)) {
memset(&sunshineHdrMetadata, 0, sizeof(sunshineHdrMetadata));
}
outputMetadata.metadata_type = 0; // HDMI_STATIC_METADATA_TYPE1
outputMetadata.hdmi_metadata_type1.eotf = 2; // SMPTE ST 2084
outputMetadata.hdmi_metadata_type1.metadata_type = 0; // Static Metadata Type 1
for (int i = 0; i < 3; i++) {
outputMetadata.hdmi_metadata_type1.display_primaries[i].x = sunshineHdrMetadata.displayPrimaries[i].x;
outputMetadata.hdmi_metadata_type1.display_primaries[i].y = sunshineHdrMetadata.displayPrimaries[i].y;
}
outputMetadata.hdmi_metadata_type1.white_point.x = sunshineHdrMetadata.whitePoint.x;
outputMetadata.hdmi_metadata_type1.white_point.y = sunshineHdrMetadata.whitePoint.y;
outputMetadata.hdmi_metadata_type1.max_display_mastering_luminance = sunshineHdrMetadata.maxDisplayLuminance;
outputMetadata.hdmi_metadata_type1.min_display_mastering_luminance = sunshineHdrMetadata.minDisplayLuminance;
outputMetadata.hdmi_metadata_type1.max_cll = sunshineHdrMetadata.maxContentLightLevel;
outputMetadata.hdmi_metadata_type1.max_fall = sunshineHdrMetadata.maxFrameAverageLightLevel;
int err = drmModeCreatePropertyBlob(m_DrmFd, &outputMetadata, sizeof(outputMetadata), &m_HdrOutputMetadataBlobId);
if (err < 0) {
m_HdrOutputMetadataBlobId = 0;
SDL_LogError(SDL_LOG_CATEGORY_APPLICATION,
"drmModeCreatePropertyBlob() failed: %d",
err);
// Non-fatal
}
}
m_PropSetter.set(*prop, enabled ? m_HdrOutputMetadataBlobId : 0);
}
else if (enabled) {
SDL_LogWarn(SDL_LOG_CATEGORY_APPLICATION,
"HDR_OUTPUT_METADATA is unavailable on this display. Unable to enter HDR mode!");
}
}
bool DrmRenderer::mapSoftwareFrame(AVFrame *frame, AVDRMFrameDescriptor *mappedFrame)
{
bool ret = false;
bool freeFrame;
auto drmFrame = &m_SwFrame[m_CurrentSwFrameIdx];
SDL_assert(frame->format != AV_PIX_FMT_DRM_PRIME);
SDL_assert(!m_DrmPrimeBackend);
// If this is a non-DRM hwframe that cannot be exported to DRM format, we must
// use the SwFrameMapper to map it to a swframe before we can copy it to dumb buffers.
if (frame->hw_frames_ctx != nullptr) {
frame = m_SwFrameMapper.getSwFrameFromHwFrame(frame);
if (frame == nullptr) {
return false;
}
freeFrame = true;
}
else {
freeFrame = false;
}
const AVPixFmtDescriptor* formatDesc = av_pix_fmt_desc_get((AVPixelFormat) frame->format);
int planes = av_pix_fmt_count_planes((AVPixelFormat) frame->format);
auto drmFormatTuple = k_AvToDrmFormatMap.find((AVPixelFormat) frame->format);
if (drmFormatTuple == k_AvToDrmFormatMap.end()) {
SDL_LogError(SDL_LOG_CATEGORY_APPLICATION,
"Unable to map frame with unsupported format: %d",
frame->format);
goto Exit;
}
// If the frame size or format changed, we need to recreate the buffer
if (frame->width != drmFrame->width ||
frame->height != drmFrame->height ||
drmFormatTuple->second != drmFrame->format) {
if (drmFrame->primeFd) {
close(drmFrame->primeFd);
drmFrame->primeFd = 0;
}
if (drmFrame->mapping) {
munmap(drmFrame->mapping, drmFrame->size);
drmFrame->mapping = nullptr;
}
if (drmFrame->handle) {
struct drm_mode_destroy_dumb destroyBuf = {};
destroyBuf.handle = drmFrame->handle;
drmIoctl(m_DrmFd, DRM_IOCTL_MODE_DESTROY_DUMB, &destroyBuf);
drmFrame->handle = 0;
}
}
// Create a new dumb buffer if needed
if (!drmFrame->handle) {
struct drm_mode_create_dumb createBuf = {};
createBuf.width = frame->width;
createBuf.height = frame->height;
createBuf.bpp = formatDesc->comp[0].step * 8;
// For planar formats, we need to add additional space to the "height"
// of the dumb buffer to account for the chroma plane(s). Chroma for
// packed formats is already covered by the bpp value since the step
// value of the Y component will also include the space for chroma
// since it's all packed into a single plane.
if (planes > 1) {
createBuf.height += (2 * AV_CEIL_RSHIFT(frame->height,
formatDesc->log2_chroma_w +
formatDesc->log2_chroma_h));
}
int err = drmIoctl(m_DrmFd, DRM_IOCTL_MODE_CREATE_DUMB, &createBuf);
if (err < 0) {
SDL_LogError(SDL_LOG_CATEGORY_APPLICATION,
"DRM_IOCTL_MODE_CREATE_DUMB failed: %d",
errno);
goto Exit;
}
drmFrame->width = frame->width;
drmFrame->height = frame->height;
drmFrame->format = drmFormatTuple->second;
drmFrame->handle = createBuf.handle;
drmFrame->pitch = createBuf.pitch;
drmFrame->size = createBuf.size;
}
// Map the dumb buffer if needed
if (!drmFrame->mapping && !mapDumbBuffer(drmFrame->handle, drmFrame->size, (void**)&drmFrame->mapping)) {
goto Exit;
}
// Convert this buffer handle to a FD if needed
if (!drmFrame->primeFd) {
int err = drmPrimeHandleToFD(m_DrmFd, drmFrame->handle, O_CLOEXEC, &drmFrame->primeFd);
if (err < 0) {
SDL_LogError(SDL_LOG_CATEGORY_APPLICATION,
"drmPrimeHandleToFD() failed: %d",
errno);
goto Exit;
}
}
{
// Construct the AVDRMFrameDescriptor and copy our frame data into the dumb buffer
SDL_zerop(mappedFrame);
// We use a single dumb buffer for semi/fully planar formats because some DRM
// drivers (i915, at least) don't support multi-buffer FBs.
mappedFrame->nb_objects = 1;
mappedFrame->objects[0].fd = drmFrame->primeFd;
mappedFrame->objects[0].size = drmFrame->size;
// We use DRM_FORMAT_MOD_INVALID because we don't want modifiers to be passed
// in drmModeAddFB2WithModifiers() when creating an FB for a dumb buffer.
// Dumb buffers are already implicitly linear and don't require modifiers.
mappedFrame->objects[0].format_modifier = DRM_FORMAT_MOD_INVALID;
mappedFrame->nb_layers = 1;
auto &layer = mappedFrame->layers[0];
layer.format = drmFrame->format;
int lastPlaneSize = 0;
for (int i = 0; i < 4; i++) {
if (frame->data[i] != nullptr) {
auto &plane = layer.planes[layer.nb_planes];
plane.object_index = 0;
plane.offset = i == 0 ? 0 : (layer.planes[layer.nb_planes - 1].offset + lastPlaneSize);
int planeHeight;
if (i == 0) {
// Y plane is not subsampled
planeHeight = frame->height;
plane.pitch = drmFrame->pitch;
}
else {
planeHeight = AV_CEIL_RSHIFT(frame->height, formatDesc->log2_chroma_h);
// First argument to AV_CEIL_RSHIFT() *must* be signed for correct behavior!
plane.pitch = AV_CEIL_RSHIFT((ptrdiff_t)drmFrame->pitch, formatDesc->log2_chroma_w);
// If UV planes are interleaved, double the pitch to count both U+V together
if (planes == 2) {
plane.pitch <<= 1;
}
}
// Copy the plane data into the dumb buffer
if (frame->linesize[i] == (int)plane.pitch) {
// We can do a single memcpy() if the pitch is compatible
memcpy(drmFrame->mapping + plane.offset,
frame->data[i],
frame->linesize[i] * planeHeight);
}
else {
// The pitch is incompatible, so we must copy line-by-line
for (int j = 0; j < planeHeight; j++) {
memcpy(drmFrame->mapping + (j * plane.pitch) + plane.offset,
frame->data[i] + (j * frame->linesize[i]),
qMin(frame->linesize[i], (int)plane.pitch));
}
}
layer.nb_planes++;
lastPlaneSize = plane.pitch * planeHeight;
}
}
}
ret = true;
m_CurrentSwFrameIdx = (m_CurrentSwFrameIdx + 1) % k_SwFrameCount;
Exit:
if (freeFrame) {
av_frame_free(&frame);
}
return ret;
}
bool DrmRenderer::mapDumbBuffer(uint32_t handle, size_t size, void** mapping)
{
struct drm_mode_map_dumb mapBuf = {};
mapBuf.handle = handle;
int err = drmIoctl(m_DrmFd, DRM_IOCTL_MODE_MAP_DUMB, &mapBuf);
if (err < 0) {
SDL_LogError(SDL_LOG_CATEGORY_APPLICATION,
"DRM_IOCTL_MODE_MAP_DUMB failed: %d",
errno);
return false;
}
// Raspberry Pi on kernel 6.1 defaults to an aarch64 kernel with a 32-bit userspace (and off_t).
// This leads to issues when DRM_IOCTL_MODE_MAP_DUMB returns a > 4GB offset. The high bits are
// chopped off when passed via the normal mmap() call using 32-bit off_t. We avoid this issue
// by explicitly calling mmap64() to ensure the 64-bit offset is never truncated.
#if defined(__GLIBC__) && QT_POINTER_SIZE == 4
*mapping = mmap64(nullptr, size, PROT_WRITE, MAP_SHARED, m_DrmFd, mapBuf.offset);
#else
*mapping = mmap(nullptr, size, PROT_WRITE, MAP_SHARED, m_DrmFd, mapBuf.offset);
#endif
if (mapping == MAP_FAILED) {
SDL_LogError(SDL_LOG_CATEGORY_APPLICATION,
"mmap() failed for dumb buffer: %d",
errno);
*mapping = nullptr;
return false;
}
return true;
}
bool DrmRenderer::createFbForDumbBuffer(struct drm_mode_create_dumb* createBuf, uint32_t* fbId)
{
uint32_t handles[4] = {0}, pitches[4] = {0}, offsets[4] = {0};
// Create a FB backed by the dumb buffer
handles[0] = createBuf->handle;
pitches[0] = createBuf->pitch;
int err = drmModeAddFB2(m_DrmFd, createBuf->width, createBuf->height,
DRM_FORMAT_ARGB8888,
handles, pitches, offsets, fbId, 0);
if (err < 0) {
SDL_LogError(SDL_LOG_CATEGORY_APPLICATION,
"drmModeAddFB2() failed: %d",
err);
return false;
}
return true;
}
bool DrmRenderer::uploadSurfaceToFb(SDL_Surface *surface, uint32_t* handle, uint32_t* fbId)
{
struct drm_mode_create_dumb createBuf = {};
void* mapping;
createBuf.width = surface->w;
createBuf.height = surface->h;
createBuf.bpp = 32;
int err = drmIoctl(m_DrmFd, DRM_IOCTL_MODE_CREATE_DUMB, &createBuf);
if (err < 0) {
SDL_LogError(SDL_LOG_CATEGORY_APPLICATION,
"DRM_IOCTL_MODE_CREATE_DUMB failed: %d",
errno);
return false;
}
// Map the buffer, so we can copy our data into it
if (!mapDumbBuffer(createBuf.handle, createBuf.size, &mapping)) {
goto Fail;
}
// Convert and copy the surface pixels into the dumb buffer with premultiplied alpha
SDL_PremultiplyAlpha(surface->w, surface->h, surface->format->format, surface->pixels, surface->pitch,
SDL_PIXELFORMAT_ARGB8888, mapping, createBuf.pitch);
munmap(mapping, createBuf.size);
if (!createFbForDumbBuffer(&createBuf, fbId)) {
goto Fail;
}
*handle = createBuf.handle;
return true;
Fail:
struct drm_mode_destroy_dumb destroyBuf = {};
destroyBuf.handle = createBuf.handle;
drmIoctl(m_DrmFd, DRM_IOCTL_MODE_DESTROY_DUMB, &destroyBuf);
return false;
}
void DrmRenderer::enterOverlayCompositionMode()
{
if (m_OverlayCompositionSurface) {
return;
}
// Turn off all existing overlay planes
for (auto &overlay : m_OverlayPlanes) {
if (overlay.isValid()) {
m_PropSetter.disablePlane(overlay);
}
}
struct drm_mode_create_dumb createBuf = {};
void* mapping = nullptr;
createBuf.width = m_OutputRect.w;
createBuf.height = m_OutputRect.h;
createBuf.bpp = 32;
int err = drmIoctl(m_DrmFd, DRM_IOCTL_MODE_CREATE_DUMB, &createBuf);
if (err < 0) {
SDL_LogError(SDL_LOG_CATEGORY_APPLICATION,
"DRM_IOCTL_MODE_CREATE_DUMB failed: %d",
errno);
return;
}
if (!mapDumbBuffer(createBuf.handle, createBuf.size, &mapping)) {
goto Fail;
}
if (!createFbForDumbBuffer(&createBuf, &m_OverlayCompositionSurfaceFbId)) {
goto Fail;
}
// Configure the overlay plane to cover the entire display
m_PropSetter.configurePlane(m_OverlayPlanes[0], m_Crtc.objectId(),
0, 0, m_OutputRect.w, m_OutputRect.h,
0, 0,
m_OutputRect.w << 16,
m_OutputRect.h << 16);
// Flip the surface onto the overlay
//
// NB: This will take ownership of both the FB and the dumb buffer,
// but it won't free them until we stop streaming since we don't
// flip this plane anymore after this.
m_PropSetter.flipPlane(m_OverlayPlanes[0],
m_OverlayCompositionSurfaceFbId,
createBuf.handle);
// Create an SDL surface that wraps our dumb buffer mapping
m_OverlayCompositionSurface = SDL_CreateRGBSurfaceWithFormatFrom(mapping,
m_OutputRect.w,
m_OutputRect.h,
32,
createBuf.pitch,
SDL_PIXELFORMAT_ARGB8888);
m_OverlayCompositionSurface->userdata = (void*)createBuf.size;
// Disable blending to avoid costly reads of possibly WC/UC data
SDL_SetSurfaceBlendMode(m_OverlayCompositionSurface, SDL_BLENDMODE_NONE);
return;
Fail:
if (mapping) {
munmap(mapping, createBuf.size);
}
struct drm_mode_destroy_dumb destroyBuf = {};
destroyBuf.handle = createBuf.handle;
drmIoctl(m_DrmFd, DRM_IOCTL_MODE_DESTROY_DUMB, &destroyBuf);
}
void DrmRenderer::blitOverlayToCompositionSurface(Overlay::OverlayType type, SDL_Surface* newSurface, SDL_Rect* overlayRect)
{
SDL_assert(m_OverlayCompositionSurface);
if (newSurface && overlayRect) {
// Premultiply alpha in place, so we can blit directly into the composition surface
// without having to read anything (which may be very costly due to UC/WC memory)
SDL_PremultiplyAlpha(newSurface->w, newSurface->h,
newSurface->format->format, newSurface->pixels, newSurface->pitch,
newSurface->format->format, newSurface->pixels, newSurface->pitch);
// Compute the union of the current and previous overlay rects. Our draw operation
// will need to cover this entire area to ensure the old dirty area is covered.
SDL_Rect overlayUnionRect;
SDL_UnionRect(overlayRect, &m_OverlayRects[type], &overlayUnionRect);
// Draw the surface row-by-row to ensure we clear the dirty area from the previous surface
for (int y = overlayUnionRect.y; y < overlayUnionRect.y + overlayUnionRect.h; y++) {
auto dstPixelRow =
(uint8_t*)m_OverlayCompositionSurface->pixels +
(y * m_OverlayCompositionSurface->pitch);
auto bpp = m_OverlayCompositionSurface->format->BytesPerPixel;
if (y < overlayRect->y || y > overlayRect->y + overlayRect->h) {
// Clear the whole row if the overlay doesn't intersect this row
memset(dstPixelRow + (overlayUnionRect.x * bpp),
0,
overlayUnionRect.w * bpp);
}
else {
auto srcPixelRow = (uint8_t*)newSurface->pixels + ((y - overlayRect->y) * newSurface->pitch);
// Clear columns prior to the intersection
SDL_assert(overlayRect->x >= overlayUnionRect.x);
memset(dstPixelRow + (overlayUnionRect.x * bpp),
0,
(overlayRect->x - overlayUnionRect.x) * bpp);
// Copy the overlay into the intersection
memcpy(dstPixelRow + (overlayRect->x * bpp),
srcPixelRow + (overlayRect->x * bpp),
overlayRect->w * bpp);
// Clear columns after the intersection
SDL_assert(overlayUnionRect.w >= overlayRect->w);
memset(dstPixelRow + ((overlayRect->x + overlayRect->w) * bpp),
0,
(overlayUnionRect.w - overlayRect->w) * bpp);
}
}
// Dirty the modified portion of the FB
drmModeClip clip;
clip.x1 = overlayUnionRect.x;
clip.x2 = overlayUnionRect.x + overlayUnionRect.w;
clip.y1 = overlayUnionRect.y;
clip.y2 = overlayUnionRect.y + overlayUnionRect.h;
drmModeDirtyFB(m_DrmFd, m_OverlayCompositionSurfaceFbId, &clip, 1);
}
else {
// Clear the pixels where this overlay was drawn before
SDL_FillRect(m_OverlayCompositionSurface, &m_OverlayRects[type], 0);
// Dirty the modified portion of the FB
drmModeClip clip;
clip.x1 = m_OverlayRects[type].x;
clip.x2 = m_OverlayRects[type].x + m_OverlayRects[type].w;
clip.y1 = m_OverlayRects[type].y;
clip.y2 = m_OverlayRects[type].y + m_OverlayRects[type].h;
drmModeDirtyFB(m_DrmFd, m_OverlayCompositionSurfaceFbId, &clip, 1);
}
}
void DrmRenderer::notifyOverlayUpdated(Overlay::OverlayType type)
{
std::lock_guard lg { m_OverlayLock };
// If we are not using atomic KMS, we can't support overlays
if (!m_PropSetter.isAtomic()) {
return;
}
// If we don't have any overlays, we can't do anything
if (!m_OverlayPlanes[0].isValid()) {
return;
}
// Don't upload if the overlay is disabled
if (!Session::get()->getOverlayManager().isOverlayEnabled(type)) {
// Turn the overlay plane off when transitioning from enabled to disabled
if (m_OverlayRects[type].w || m_OverlayRects[type].h) {
if (m_OverlayCompositionSurface) {
blitOverlayToCompositionSurface(type, nullptr, nullptr);
}
else if (m_OverlayPlanes[type].isValid()) {
m_PropSetter.disablePlane(m_OverlayPlanes[type]);
}
memset(&m_OverlayRects[type], 0, sizeof(m_OverlayRects[type]));
}
return;
}
// Upload a new overlay surface if needed
SDL_Surface* newSurface = Session::get()->getOverlayManager().getUpdatedOverlaySurface(type);
if (newSurface != nullptr) {
uint32_t dumbBuffer, fbId;
SDL_Rect overlayRect;
if (type == Overlay::OverlayStatusUpdate) {
// Bottom Left
overlayRect.x = 0;
overlayRect.y = m_OutputRect.h - newSurface->h;
}
else if (type == Overlay::OverlayDebug) {
// Top left
overlayRect.x = 0;
overlayRect.y = 0;
}
overlayRect.w = newSurface->w;
overlayRect.h = newSurface->h;
// Try to let the display controller composite for us
if (!m_OverlayCompositionSurface) {
if (!uploadSurfaceToFb(newSurface, &dumbBuffer, &fbId)) {
SDL_FreeSurface(newSurface);
return;
}
// If we changed our overlay rect, we need to reconfigure the plane
if (memcmp(&m_OverlayRects[type], &overlayRect, sizeof(overlayRect)) != 0) {
if (m_PropSetter.testPlane(m_OverlayPlanes[type], m_Crtc.objectId(), fbId,
overlayRect.x, overlayRect.y, overlayRect.w, overlayRect.h,
0, 0,
newSurface->w << 16,
newSurface->h << 16)) {
m_PropSetter.configurePlane(m_OverlayPlanes[type], m_Crtc.objectId(),
overlayRect.x, overlayRect.y, overlayRect.w, overlayRect.h,
0, 0,
newSurface->w << 16,
newSurface->h << 16);
}
else {
SDL_LogWarn(SDL_LOG_CATEGORY_APPLICATION,
"Switching to overlay composition mode after commit failure");
enterOverlayCompositionMode();
// Free the original uploaded FB and dumb buffer
drmModeRmFB(m_DrmFd, fbId);
struct drm_mode_destroy_dumb destroyBuf = {};
destroyBuf.handle = dumbBuffer;
drmIoctl(m_DrmFd, DRM_IOCTL_MODE_DESTROY_DUMB, &destroyBuf);
}
}
}
// If we're in overlay composition mode, blit this overlay into the composition surface
if (m_OverlayCompositionSurface) {
blitOverlayToCompositionSurface(type, newSurface, &overlayRect);
}
else {
// Otherwise queue the plane flip with the new FB
//
// NB: This takes ownership of the FB and dumb buffer, even on failure
m_PropSetter.flipPlane(m_OverlayCompositionSurface ? m_OverlayPlanes[0] : m_OverlayPlanes[type],
fbId, dumbBuffer);
}
memcpy(&m_OverlayRects[type], &overlayRect, sizeof(overlayRect));
SDL_FreeSurface(newSurface);
}
}
bool DrmRenderer::addFbForFrame(AVFrame *frame, uint32_t* newFbId, bool testMode)
{
AVDRMFrameDescriptor mappedFrame;
AVDRMFrameDescriptor* drmFrame;
int err;
// If we don't have a DRM PRIME frame here, we'll need to map into one
if (frame->format != AV_PIX_FMT_DRM_PRIME) {
if (m_DrmPrimeBackend) {
// If the backend supports DRM PRIME directly, use that.
if (!m_BackendRenderer->mapDrmPrimeFrame(frame, &mappedFrame)) {
return false;
}
}
else {
// Otherwise, we'll map it to a software format and use dumb buffers
if (!mapSoftwareFrame(frame, &mappedFrame)) {
return false;
}
}
drmFrame = &mappedFrame;
}
else {
SDL_assert(frame->format == AV_PIX_FMT_DRM_PRIME);
drmFrame = (AVDRMFrameDescriptor*)frame->data[0];
}
// If we're testing, check the IN_FORMATS property or legacy plane formats
if (testMode) {
bool formatMatch = false;
uint64_t maskedModifier = drmFrame->objects[0].format_modifier;
if (fourcc_mod_is_vendor(maskedModifier, BROADCOM)) {
// Broadcom has modifiers that contain variable data, so we need to mask
// off the variable data because the IN_FORMATS blob contains the just
// the base modifier alone
maskedModifier = fourcc_mod_broadcom_mod(maskedModifier);
}
// If we have an IN_FORMATS property and the frame has DRM modifiers, use that since it supports modifiers too
if (auto prop = m_VideoPlane.property("IN_FORMATS"); prop && maskedModifier != DRM_FORMAT_MOD_INVALID) {
drmModePropertyBlobPtr blob = drmModeGetPropertyBlob(m_DrmFd, prop->initialValue());
if (blob) {
auto *header = (struct drm_format_modifier_blob *)blob->data;
auto *modifiers = (struct drm_format_modifier *)((char *)header + header->modifiers_offset);
uint32_t *formats = (uint32_t *)((char *)header + header->formats_offset);
for (uint32_t i = 0; i < header->count_modifiers; i++) {
if (modifiers[i].modifier == maskedModifier) {
for (uint32_t j = 0; j < header->count_formats && j < sizeof(modifiers[i].formats) * 8; j++) {
if (modifiers[i].formats & (1ULL << j)) {
if (formats[modifiers[i].offset + j] == drmFrame->layers[0].format) {
formatMatch = true;
break;
}
}
}
if (formatMatch) {
break;
}
else {
// Do not break for this case even though we got a modifier
// match that did not appear to have our format in it.
// To handle greater than 64 formats, the same modifier may
// appear in the list more than once.
}
}
}
drmModeFreePropertyBlob(blob);
}
else {
// This should never happen since IN_FORMATS is an immutable property
SDL_LogError(SDL_LOG_CATEGORY_APPLICATION,
"drmModeGetPropertyBlob(IN_FORMATS) failed: %d",
errno);
}
}
else {
drmModePlanePtr videoPlane = drmModeGetPlane(m_DrmFd, m_VideoPlane.objectId());
if (videoPlane) {
for (uint32_t i = 0; i < videoPlane->count_formats; i++) {
if (drmFrame->layers[0].format == videoPlane->formats[i]) {
formatMatch = true;
break;
}
}
drmModeFreePlane(videoPlane);
}
else {
SDL_LogError(SDL_LOG_CATEGORY_APPLICATION,
"drmModeGetPlane() failed: %d",
errno);
}
}
if (formatMatch) {
SDL_LogInfo(SDL_LOG_CATEGORY_APPLICATION,
"Selected DRM plane supports chosen decoding format and modifier: " FOURCC_FMT " %016" PRIx64,
FOURCC_FMT_ARGS(drmFrame->layers[0].format),
drmFrame->objects[0].format_modifier);
}
else {
SDL_LogError(SDL_LOG_CATEGORY_APPLICATION,
"Selected DRM plane doesn't support chosen decoding format and modifier: " FOURCC_FMT " %016" PRIx64,
FOURCC_FMT_ARGS(drmFrame->layers[0].format),
drmFrame->objects[0].format_modifier);
return false;
}
}
uint32_t handles[4] = {};
uint32_t pitches[4] = {};
uint32_t offsets[4] = {};
uint64_t modifiers[4] = {};
uint32_t flags = 0;
// DRM requires composed layers rather than separate layers per plane
SDL_assert(drmFrame->nb_layers == 1);
const auto &layer = drmFrame->layers[0];
for (int i = 0; i < layer.nb_planes; i++) {
const auto &object = drmFrame->objects[layer.planes[i].object_index];
err = drmPrimeFDToHandle(m_DrmFd, object.fd, &handles[i]);
if (err < 0) {
SDL_LogError(SDL_LOG_CATEGORY_APPLICATION,
"drmPrimeFDToHandle() failed: %d",
errno);
return false;
}
pitches[i] = layer.planes[i].pitch;
offsets[i] = layer.planes[i].offset;
modifiers[i] = object.format_modifier;
// Pass along the modifiers to DRM if there are some in the descriptor
// and the driver supports receiving modifiers on FBs
if (modifiers[i] != DRM_FORMAT_MOD_INVALID && m_DrmSupportsModifiers) {
flags |= DRM_MODE_FB_MODIFIERS;
}
}
// Create a frame buffer object from the PRIME buffer
// NB: It is an error to pass modifiers without DRM_MODE_FB_MODIFIERS set.
err = drmModeAddFB2WithModifiers(m_DrmFd, frame->width, frame->height,
drmFrame->layers[0].format,
handles, pitches, offsets,
(flags & DRM_MODE_FB_MODIFIERS) ? modifiers : NULL,
newFbId, flags);
if (err < 0) {
SDL_LogError(SDL_LOG_CATEGORY_APPLICATION,
"drmModeAddFB2[WithModifiers]() failed: %d",
err);
return false;
}
return true;
}
bool DrmRenderer::drmFormatMatchesVideoFormat(uint32_t drmFormat, int videoFormat)
{
auto drmToAvTuple = k_DrmToAvFormatMap.find(drmFormat);
if (drmToAvTuple == k_DrmToAvFormatMap.end()) {
return false;
}
const int expectedPixelDepth = (videoFormat & VIDEO_FORMAT_MASK_10BIT) ? 10 : 8;
const int expectedLog2ChromaW = (videoFormat & VIDEO_FORMAT_MASK_YUV444) ? 0 : 1;
const int expectedLog2ChromaH = (videoFormat & VIDEO_FORMAT_MASK_YUV444) ? 0 : 1;
const AVPixFmtDescriptor* formatDesc = av_pix_fmt_desc_get(drmToAvTuple->second);
if (!formatDesc) {
// This shouldn't be possible but handle it anyway
SDL_assert(formatDesc);
return false;
}
return formatDesc->comp[0].depth == expectedPixelDepth &&
formatDesc->log2_chroma_w == expectedLog2ChromaW &&
formatDesc->log2_chroma_h == expectedLog2ChromaH;
}
void DrmRenderer::renderFrame(AVFrame* frame)
{
SDL_assert(m_OutputRect.w > 0 && m_OutputRect.h > 0);
// Register a frame buffer object for this frame
uint32_t fbId;
if (!addFbForFrame(frame, &fbId, false)) {
return;
}
if (hasFrameFormatChanged(frame)) {
SDL_Rect src, dst;
src.x = src.y = 0;
src.w = frame->width;
src.h = frame->height;
dst = m_OutputRect;
StreamUtils::scaleSourceToDestinationSurface(&src, &dst);
// Set the video plane size and location
m_PropSetter.configurePlane(m_VideoPlane, m_Crtc.objectId(),
dst.x, dst.y,
dst.w, dst.h,
0, 0,
frame->width << 16,
frame->height << 16);
// Set COLOR_RANGE property for the plane
if (auto prop = m_VideoPlane.property("COLOR_RANGE")) {
const char* desiredValue = getDrmColorRangeValue(frame);
if (prop->containsValue(desiredValue)) {
m_PropSetter.set(*prop, desiredValue);
}
else {
SDL_LogWarn(SDL_LOG_CATEGORY_APPLICATION,
"Unable to find matching COLOR_RANGE value for '%s'. Colors may be inaccurate!",
desiredValue);
}
}
else {
SDL_LogWarn(SDL_LOG_CATEGORY_APPLICATION,
"COLOR_RANGE property does not exist on video plane. Colors may be inaccurate!");
}
// Set COLOR_ENCODING property for the plane
if (auto prop = m_VideoPlane.property("COLOR_ENCODING")) {
const char* desiredValue = getDrmColorEncodingValue(frame);
if (prop->containsValue(desiredValue)) {
m_PropSetter.set(*prop, desiredValue);
}
else {
SDL_LogWarn(SDL_LOG_CATEGORY_APPLICATION,
"Unable to find matching COLOR_ENCODING value for '%s'. Colors may be inaccurate!",
desiredValue);
}
}
else {
SDL_LogWarn(SDL_LOG_CATEGORY_APPLICATION,
"COLOR_ENCODING property does not exist on video plane. Colors may be inaccurate!");
}
}
// Update the video plane
//
// NB: This takes ownership of fbId, even on failure
//
// NB2: Pacer references the AVFrame (which also references the AVBuffers backing the frame
// and the opaque_ref which may store our DRM-PRIME mapping) for frames backed by DMA-BUFs in
// order to keep those from being reused by the decoder while they're still being scanned out.
m_PropSetter.flipPlane(m_VideoPlane, fbId, 0);
// Apply pending atomic transaction (if in atomic mode)
m_PropSetter.apply();
}
bool DrmRenderer::testRenderFrame(AVFrame* frame) {
uint32_t fbId;
// If we don't even have a plane, we certainly can't render
if (!m_VideoPlane.isValid()) {
return false;
}
// Ensure we can export DRM PRIME frames (if applicable) and
// add a FB object with the provided DRM format. Ask for the
// extended validation to ensure the chosen plane supports
// the format too.
if (!addFbForFrame(frame, &fbId, true)) {
return false;
}
drmModeRmFB(m_DrmFd, fbId);
return true;
}
bool DrmRenderer::isDirectRenderingSupported()
{
return m_SupportsDirectRendering;
}
int DrmRenderer::getDecoderColorspace()
{
if (auto prop = m_VideoPlane.property("COLOR_ENCODING")) {
if (prop->containsValue("ITU-R BT.601 YCbCr")) {
return COLORSPACE_REC_601;
}
else if (prop->containsValue("ITU-R BT.709 YCbCr")) {
return COLORSPACE_REC_709;
}
}
// Default to BT.601 if we couldn't find a valid COLOR_ENCODING property
return COLORSPACE_REC_601;
}
const char* DrmRenderer::getDrmColorEncodingValue(AVFrame* frame)
{
switch (getFrameColorspace(frame)) {
case COLORSPACE_REC_601:
return "ITU-R BT.601 YCbCr";
case COLORSPACE_REC_709:
return "ITU-R BT.709 YCbCr";
case COLORSPACE_REC_2020:
return "ITU-R BT.2020 YCbCr";
default:
return NULL;
}
}
const char* DrmRenderer::getDrmColorRangeValue(AVFrame* frame)
{
return isFrameFullRange(frame) ? "YCbCr full range" : "YCbCr limited range";
}
#ifdef HAVE_EGL
bool DrmRenderer::canExportEGL() {
if (qgetenv("DRM_FORCE_DIRECT") == "1") {
SDL_LogInfo(SDL_LOG_CATEGORY_APPLICATION,
"Using direct rendering due to environment variable");
return false;
}
else if (qgetenv("DRM_FORCE_EGL") == "1") {
SDL_LogInfo(SDL_LOG_CATEGORY_APPLICATION,
"Using EGL rendering due to environment variable");
return true;
}
else if (m_SupportsDirectRendering && (m_VideoFormat & VIDEO_FORMAT_MASK_10BIT)) {
SDL_LogInfo(SDL_LOG_CATEGORY_APPLICATION,
"Using direct rendering for HDR support");
return false;
}
#if defined(HAVE_MMAL) && !defined(ALLOW_EGL_WITH_MMAL)
// EGL rendering is so slow on the Raspberry Pi 4 that we should basically
// never use it. It is suitable for 1080p 30 FPS on a good day, and much
// much less than that if you decide to do something crazy like stream
// in full-screen. MMAL is the ideal rendering API for Buster and Bullseye,
// but it's gone in Bookworm. Fortunately, Bookworm has a more efficient
// rendering pipeline that makes EGL mostly usable as long as we stick
// to a 1080p 60 FPS maximum.
if (qgetenv("RPI_ALLOW_EGL_RENDER") != "1") {
SDL_LogInfo(SDL_LOG_CATEGORY_APPLICATION,
"Disabling EGL rendering due to low performance on Raspberry Pi 4");
SDL_LogInfo(SDL_LOG_CATEGORY_APPLICATION,
"Set RPI_ALLOW_EGL_RENDER=1 to override");
return false;
}
#endif
SDL_LogInfo(SDL_LOG_CATEGORY_APPLICATION,
"DRM backend supports exporting EGLImage");
return true;
}
AVPixelFormat DrmRenderer::getEGLImagePixelFormat() {
// This tells EGLRenderer to treat the EGLImage as a single opaque texture
return AV_PIX_FMT_DRM_PRIME;
}
bool DrmRenderer::initializeEGL(EGLDisplay display,
const EGLExtensions &ext) {
return m_EglImageFactory.initializeEGL(display, ext);
}
ssize_t DrmRenderer::exportEGLImages(AVFrame *frame, EGLDisplay dpy,
EGLImage images[EGL_MAX_PLANES]) {
if (frame->format != AV_PIX_FMT_DRM_PRIME) {
SDL_LogWarn(SDL_LOG_CATEGORY_APPLICATION,
"EGLImage export requires hardware-backed frames");
return -1;
}
return m_EglImageFactory.exportDRMImages(frame, dpy, images);
}
#endif