Include h264bitstream library

This commit is contained in:
Iwan Timmer 2015-05-01 14:19:14 +02:00
parent f231f0a8e0
commit c4e8cee2bf
7 changed files with 4680 additions and 0 deletions

504
h264bitstream/LICENSE Normal file
View File

@ -0,0 +1,504 @@
GNU LESSER GENERAL PUBLIC LICENSE
Version 2.1, February 1999
Copyright (C) 1991, 1999 Free Software Foundation, Inc.
51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.
[This is the first released version of the Lesser GPL. It also counts
as the successor of the GNU Library Public License, version 2, hence
the version number 2.1.]
Preamble
The licenses for most software are designed to take away your
freedom to share and change it. By contrast, the GNU General Public
Licenses are intended to guarantee your freedom to share and change
free software--to make sure the software is free for all its users.
This license, the Lesser General Public License, applies to some
specially designated software packages--typically libraries--of the
Free Software Foundation and other authors who decide to use it. You
can use it too, but we suggest you first think carefully about whether
this license or the ordinary General Public License is the better
strategy to use in any particular case, based on the explanations below.
When we speak of free software, we are referring to freedom of use,
not price. Our General Public Licenses are designed to make sure that
you have the freedom to distribute copies of free software (and charge
for this service if you wish); that you receive source code or can get
it if you want it; that you can change the software and use pieces of
it in new free programs; and that you are informed that you can do
these things.
To protect your rights, we need to make restrictions that forbid
distributors to deny you these rights or to ask you to surrender these
rights. These restrictions translate to certain responsibilities for
you if you distribute copies of the library or if you modify it.
For example, if you distribute copies of the library, whether gratis
or for a fee, you must give the recipients all the rights that we gave
you. You must make sure that they, too, receive or can get the source
code. If you link other code with the library, you must provide
complete object files to the recipients, so that they can relink them
with the library after making changes to the library and recompiling
it. And you must show them these terms so they know their rights.
We protect your rights with a two-step method: (1) we copyright the
library, and (2) we offer you this license, which gives you legal
permission to copy, distribute and/or modify the library.
To protect each distributor, we want to make it very clear that
there is no warranty for the free library. Also, if the library is
modified by someone else and passed on, the recipients should know
that what they have is not the original version, so that the original
author's reputation will not be affected by problems that might be
introduced by others.
Finally, software patents pose a constant threat to the existence of
any free program. We wish to make sure that a company cannot
effectively restrict the users of a free program by obtaining a
restrictive license from a patent holder. Therefore, we insist that
any patent license obtained for a version of the library must be
consistent with the full freedom of use specified in this license.
Most GNU software, including some libraries, is covered by the
ordinary GNU General Public License. This license, the GNU Lesser
General Public License, applies to certain designated libraries, and
is quite different from the ordinary General Public License. We use
this license for certain libraries in order to permit linking those
libraries into non-free programs.
When a program is linked with a library, whether statically or using
a shared library, the combination of the two is legally speaking a
combined work, a derivative of the original library. The ordinary
General Public License therefore permits such linking only if the
entire combination fits its criteria of freedom. The Lesser General
Public License permits more lax criteria for linking other code with
the library.
We call this license the "Lesser" General Public License because it
does Less to protect the user's freedom than the ordinary General
Public License. It also provides other free software developers Less
of an advantage over competing non-free programs. These disadvantages
are the reason we use the ordinary General Public License for many
libraries. However, the Lesser license provides advantages in certain
special circumstances.
For example, on rare occasions, there may be a special need to
encourage the widest possible use of a certain library, so that it becomes
a de-facto standard. To achieve this, non-free programs must be
allowed to use the library. A more frequent case is that a free
library does the same job as widely used non-free libraries. In this
case, there is little to gain by limiting the free library to free
software only, so we use the Lesser General Public License.
In other cases, permission to use a particular library in non-free
programs enables a greater number of people to use a large body of
free software. For example, permission to use the GNU C Library in
non-free programs enables many more people to use the whole GNU
operating system, as well as its variant, the GNU/Linux operating
system.
Although the Lesser General Public License is Less protective of the
users' freedom, it does ensure that the user of a program that is
linked with the Library has the freedom and the wherewithal to run
that program using a modified version of the Library.
The precise terms and conditions for copying, distribution and
modification follow. Pay close attention to the difference between a
"work based on the library" and a "work that uses the library". The
former contains code derived from the library, whereas the latter must
be combined with the library in order to run.
GNU LESSER GENERAL PUBLIC LICENSE
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION
0. This License Agreement applies to any software library or other
program which contains a notice placed by the copyright holder or
other authorized party saying it may be distributed under the terms of
this Lesser General Public License (also called "this License").
Each licensee is addressed as "you".
A "library" means a collection of software functions and/or data
prepared so as to be conveniently linked with application programs
(which use some of those functions and data) to form executables.
The "Library", below, refers to any such software library or work
which has been distributed under these terms. A "work based on the
Library" means either the Library or any derivative work under
copyright law: that is to say, a work containing the Library or a
portion of it, either verbatim or with modifications and/or translated
straightforwardly into another language. (Hereinafter, translation is
included without limitation in the term "modification".)
"Source code" for a work means the preferred form of the work for
making modifications to it. For a library, complete source code means
all the source code for all modules it contains, plus any associated
interface definition files, plus the scripts used to control compilation
and installation of the library.
Activities other than copying, distribution and modification are not
covered by this License; they are outside its scope. The act of
running a program using the Library is not restricted, and output from
such a program is covered only if its contents constitute a work based
on the Library (independent of the use of the Library in a tool for
writing it). Whether that is true depends on what the Library does
and what the program that uses the Library does.
1. You may copy and distribute verbatim copies of the Library's
complete source code as you receive it, in any medium, provided that
you conspicuously and appropriately publish on each copy an
appropriate copyright notice and disclaimer of warranty; keep intact
all the notices that refer to this License and to the absence of any
warranty; and distribute a copy of this License along with the
Library.
You may charge a fee for the physical act of transferring a copy,
and you may at your option offer warranty protection in exchange for a
fee.
2. You may modify your copy or copies of the Library or any portion
of it, thus forming a work based on the Library, and copy and
distribute such modifications or work under the terms of Section 1
above, provided that you also meet all of these conditions:
a) The modified work must itself be a software library.
b) You must cause the files modified to carry prominent notices
stating that you changed the files and the date of any change.
c) You must cause the whole of the work to be licensed at no
charge to all third parties under the terms of this License.
d) If a facility in the modified Library refers to a function or a
table of data to be supplied by an application program that uses
the facility, other than as an argument passed when the facility
is invoked, then you must make a good faith effort to ensure that,
in the event an application does not supply such function or
table, the facility still operates, and performs whatever part of
its purpose remains meaningful.
(For example, a function in a library to compute square roots has
a purpose that is entirely well-defined independent of the
application. Therefore, Subsection 2d requires that any
application-supplied function or table used by this function must
be optional: if the application does not supply it, the square
root function must still compute square roots.)
These requirements apply to the modified work as a whole. If
identifiable sections of that work are not derived from the Library,
and can be reasonably considered independent and separate works in
themselves, then this License, and its terms, do not apply to those
sections when you distribute them as separate works. But when you
distribute the same sections as part of a whole which is a work based
on the Library, the distribution of the whole must be on the terms of
this License, whose permissions for other licensees extend to the
entire whole, and thus to each and every part regardless of who wrote
it.
Thus, it is not the intent of this section to claim rights or contest
your rights to work written entirely by you; rather, the intent is to
exercise the right to control the distribution of derivative or
collective works based on the Library.
In addition, mere aggregation of another work not based on the Library
with the Library (or with a work based on the Library) on a volume of
a storage or distribution medium does not bring the other work under
the scope of this License.
3. You may opt to apply the terms of the ordinary GNU General Public
License instead of this License to a given copy of the Library. To do
this, you must alter all the notices that refer to this License, so
that they refer to the ordinary GNU General Public License, version 2,
instead of to this License. (If a newer version than version 2 of the
ordinary GNU General Public License has appeared, then you can specify
that version instead if you wish.) Do not make any other change in
these notices.
Once this change is made in a given copy, it is irreversible for
that copy, so the ordinary GNU General Public License applies to all
subsequent copies and derivative works made from that copy.
This option is useful when you wish to copy part of the code of
the Library into a program that is not a library.
4. You may copy and distribute the Library (or a portion or
derivative of it, under Section 2) in object code or executable form
under the terms of Sections 1 and 2 above provided that you accompany
it with the complete corresponding machine-readable source code, which
must be distributed under the terms of Sections 1 and 2 above on a
medium customarily used for software interchange.
If distribution of object code is made by offering access to copy
from a designated place, then offering equivalent access to copy the
source code from the same place satisfies the requirement to
distribute the source code, even though third parties are not
compelled to copy the source along with the object code.
5. A program that contains no derivative of any portion of the
Library, but is designed to work with the Library by being compiled or
linked with it, is called a "work that uses the Library". Such a
work, in isolation, is not a derivative work of the Library, and
therefore falls outside the scope of this License.
However, linking a "work that uses the Library" with the Library
creates an executable that is a derivative of the Library (because it
contains portions of the Library), rather than a "work that uses the
library". The executable is therefore covered by this License.
Section 6 states terms for distribution of such executables.
When a "work that uses the Library" uses material from a header file
that is part of the Library, the object code for the work may be a
derivative work of the Library even though the source code is not.
Whether this is true is especially significant if the work can be
linked without the Library, or if the work is itself a library. The
threshold for this to be true is not precisely defined by law.
If such an object file uses only numerical parameters, data
structure layouts and accessors, and small macros and small inline
functions (ten lines or less in length), then the use of the object
file is unrestricted, regardless of whether it is legally a derivative
work. (Executables containing this object code plus portions of the
Library will still fall under Section 6.)
Otherwise, if the work is a derivative of the Library, you may
distribute the object code for the work under the terms of Section 6.
Any executables containing that work also fall under Section 6,
whether or not they are linked directly with the Library itself.
6. As an exception to the Sections above, you may also combine or
link a "work that uses the Library" with the Library to produce a
work containing portions of the Library, and distribute that work
under terms of your choice, provided that the terms permit
modification of the work for the customer's own use and reverse
engineering for debugging such modifications.
You must give prominent notice with each copy of the work that the
Library is used in it and that the Library and its use are covered by
this License. You must supply a copy of this License. If the work
during execution displays copyright notices, you must include the
copyright notice for the Library among them, as well as a reference
directing the user to the copy of this License. Also, you must do one
of these things:
a) Accompany the work with the complete corresponding
machine-readable source code for the Library including whatever
changes were used in the work (which must be distributed under
Sections 1 and 2 above); and, if the work is an executable linked
with the Library, with the complete machine-readable "work that
uses the Library", as object code and/or source code, so that the
user can modify the Library and then relink to produce a modified
executable containing the modified Library. (It is understood
that the user who changes the contents of definitions files in the
Library will not necessarily be able to recompile the application
to use the modified definitions.)
b) Use a suitable shared library mechanism for linking with the
Library. A suitable mechanism is one that (1) uses at run time a
copy of the library already present on the user's computer system,
rather than copying library functions into the executable, and (2)
will operate properly with a modified version of the library, if
the user installs one, as long as the modified version is
interface-compatible with the version that the work was made with.
c) Accompany the work with a written offer, valid for at
least three years, to give the same user the materials
specified in Subsection 6a, above, for a charge no more
than the cost of performing this distribution.
d) If distribution of the work is made by offering access to copy
from a designated place, offer equivalent access to copy the above
specified materials from the same place.
e) Verify that the user has already received a copy of these
materials or that you have already sent this user a copy.
For an executable, the required form of the "work that uses the
Library" must include any data and utility programs needed for
reproducing the executable from it. However, as a special exception,
the materials to be distributed need not include anything that is
normally distributed (in either source or binary form) with the major
components (compiler, kernel, and so on) of the operating system on
which the executable runs, unless that component itself accompanies
the executable.
It may happen that this requirement contradicts the license
restrictions of other proprietary libraries that do not normally
accompany the operating system. Such a contradiction means you cannot
use both them and the Library together in an executable that you
distribute.
7. You may place library facilities that are a work based on the
Library side-by-side in a single library together with other library
facilities not covered by this License, and distribute such a combined
library, provided that the separate distribution of the work based on
the Library and of the other library facilities is otherwise
permitted, and provided that you do these two things:
a) Accompany the combined library with a copy of the same work
based on the Library, uncombined with any other library
facilities. This must be distributed under the terms of the
Sections above.
b) Give prominent notice with the combined library of the fact
that part of it is a work based on the Library, and explaining
where to find the accompanying uncombined form of the same work.
8. You may not copy, modify, sublicense, link with, or distribute
the Library except as expressly provided under this License. Any
attempt otherwise to copy, modify, sublicense, link with, or
distribute the Library is void, and will automatically terminate your
rights under this License. However, parties who have received copies,
or rights, from you under this License will not have their licenses
terminated so long as such parties remain in full compliance.
9. You are not required to accept this License, since you have not
signed it. However, nothing else grants you permission to modify or
distribute the Library or its derivative works. These actions are
prohibited by law if you do not accept this License. Therefore, by
modifying or distributing the Library (or any work based on the
Library), you indicate your acceptance of this License to do so, and
all its terms and conditions for copying, distributing or modifying
the Library or works based on it.
10. Each time you redistribute the Library (or any work based on the
Library), the recipient automatically receives a license from the
original licensor to copy, distribute, link with or modify the Library
subject to these terms and conditions. You may not impose any further
restrictions on the recipients' exercise of the rights granted herein.
You are not responsible for enforcing compliance by third parties with
this License.
11. If, as a consequence of a court judgment or allegation of patent
infringement or for any other reason (not limited to patent issues),
conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot
distribute so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you
may not distribute the Library at all. For example, if a patent
license would not permit royalty-free redistribution of the Library by
all those who receive copies directly or indirectly through you, then
the only way you could satisfy both it and this License would be to
refrain entirely from distribution of the Library.
If any portion of this section is held invalid or unenforceable under any
particular circumstance, the balance of the section is intended to apply,
and the section as a whole is intended to apply in other circumstances.
It is not the purpose of this section to induce you to infringe any
patents or other property right claims or to contest validity of any
such claims; this section has the sole purpose of protecting the
integrity of the free software distribution system which is
implemented by public license practices. Many people have made
generous contributions to the wide range of software distributed
through that system in reliance on consistent application of that
system; it is up to the author/donor to decide if he or she is willing
to distribute software through any other system and a licensee cannot
impose that choice.
This section is intended to make thoroughly clear what is believed to
be a consequence of the rest of this License.
12. If the distribution and/or use of the Library is restricted in
certain countries either by patents or by copyrighted interfaces, the
original copyright holder who places the Library under this License may add
an explicit geographical distribution limitation excluding those countries,
so that distribution is permitted only in or among countries not thus
excluded. In such case, this License incorporates the limitation as if
written in the body of this License.
13. The Free Software Foundation may publish revised and/or new
versions of the Lesser General Public License from time to time.
Such new versions will be similar in spirit to the present version,
but may differ in detail to address new problems or concerns.
Each version is given a distinguishing version number. If the Library
specifies a version number of this License which applies to it and
"any later version", you have the option of following the terms and
conditions either of that version or of any later version published by
the Free Software Foundation. If the Library does not specify a
license version number, you may choose any version ever published by
the Free Software Foundation.
14. If you wish to incorporate parts of the Library into other free
programs whose distribution conditions are incompatible with these,
write to the author to ask for permission. For software which is
copyrighted by the Free Software Foundation, write to the Free
Software Foundation; we sometimes make exceptions for this. Our
decision will be guided by the two goals of preserving the free status
of all derivatives of our free software and of promoting the sharing
and reuse of software generally.
NO WARRANTY
15. BECAUSE THE LIBRARY IS LICENSED FREE OF CHARGE, THERE IS NO
WARRANTY FOR THE LIBRARY, TO THE EXTENT PERMITTED BY APPLICABLE LAW.
EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR
OTHER PARTIES PROVIDE THE LIBRARY "AS IS" WITHOUT WARRANTY OF ANY
KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE
LIBRARY IS WITH YOU. SHOULD THE LIBRARY PROVE DEFECTIVE, YOU ASSUME
THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
16. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY
AND/OR REDISTRIBUTE THE LIBRARY AS PERMITTED ABOVE, BE LIABLE TO YOU
FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR
CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE
LIBRARY (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING
RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A
FAILURE OF THE LIBRARY TO OPERATE WITH ANY OTHER SOFTWARE), EVEN IF
SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.
END OF TERMS AND CONDITIONS
How to Apply These Terms to Your New Libraries
If you develop a new library, and you want it to be of the greatest
possible use to the public, we recommend making it free software that
everyone can redistribute and change. You can do so by permitting
redistribution under these terms (or, alternatively, under the terms of the
ordinary General Public License).
To apply these terms, attach the following notices to the library. It is
safest to attach them to the start of each source file to most effectively
convey the exclusion of warranty; and each file should have at least the
"copyright" line and a pointer to where the full notice is found.
<one line to give the library's name and a brief idea of what it does.>
Copyright (C) <year> <name of author>
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
Also add information on how to contact you by electronic and paper mail.
You should also get your employer (if you work as a programmer) or your
school, if any, to sign a "copyright disclaimer" for the library, if
necessary. Here is a sample; alter the names:
Yoyodyne, Inc., hereby disclaims all copyright interest in the
library `Frob' (a library for tweaking knobs) written by James Random Hacker.
<signature of Ty Coon>, 1 April 1990
Ty Coon, President of Vice
That's all there is to it!

388
h264bitstream/bs.h Normal file
View File

@ -0,0 +1,388 @@
/*
* h264bitstream - a library for reading and writing H.264 video
* Copyright (C) 2005-2007 Auroras Entertainment, LLC
* Copyright (C) 2008-2011 Avail-TVN
*
* Written by Alex Izvorski <aizvorski@gmail.com> and Alex Giladi <alex.giladi@gmail.com>
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#ifndef _H264_BS_H
#define _H264_BS_H 1
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#ifdef __cplusplus
extern "C" {
#endif
typedef struct
{
uint8_t* start;
uint8_t* p;
uint8_t* end;
int bits_left;
} bs_t;
#define _OPTIMIZE_BS_ 1
#if ( _OPTIMIZE_BS_ > 0 )
#ifndef FAST_U8
#define FAST_U8
#endif
#endif
static bs_t* bs_new(uint8_t* buf, size_t size);
static void bs_free(bs_t* b);
static bs_t* bs_clone( bs_t* dest, const bs_t* src );
static bs_t* bs_init(bs_t* b, uint8_t* buf, size_t size);
static uint32_t bs_byte_aligned(bs_t* b);
static int bs_eof(bs_t* b);
static int bs_overrun(bs_t* b);
static int bs_pos(bs_t* b);
static uint32_t bs_peek_u1(bs_t* b);
static uint32_t bs_read_u1(bs_t* b);
static uint32_t bs_read_u(bs_t* b, int n);
static uint32_t bs_read_f(bs_t* b, int n);
static uint32_t bs_read_u8(bs_t* b);
static uint32_t bs_read_ue(bs_t* b);
static int32_t bs_read_se(bs_t* b);
static void bs_write_u1(bs_t* b, uint32_t v);
static void bs_write_u(bs_t* b, int n, uint32_t v);
static void bs_write_f(bs_t* b, int n, uint32_t v);
static void bs_write_u8(bs_t* b, uint32_t v);
static void bs_write_ue(bs_t* b, uint32_t v);
static void bs_write_se(bs_t* b, int32_t v);
static int bs_read_bytes(bs_t* b, uint8_t* buf, int len);
static int bs_write_bytes(bs_t* b, uint8_t* buf, int len);
static int bs_skip_bytes(bs_t* b, int len);
static uint32_t bs_next_bits(bs_t* b, int nbits);
// IMPLEMENTATION
static inline bs_t* bs_init(bs_t* b, uint8_t* buf, size_t size)
{
b->start = buf;
b->p = buf;
b->end = buf + size;
b->bits_left = 8;
return b;
}
static inline bs_t* bs_new(uint8_t* buf, size_t size)
{
bs_t* b = (bs_t*)malloc(sizeof(bs_t));
bs_init(b, buf, size);
return b;
}
static inline void bs_free(bs_t* b)
{
free(b);
}
static inline bs_t* bs_clone(bs_t* dest, const bs_t* src)
{
dest->start = src->p;
dest->p = src->p;
dest->end = src->end;
dest->bits_left = src->bits_left;
return dest;
}
static inline uint32_t bs_byte_aligned(bs_t* b)
{
return (b->bits_left == 8);
}
static inline int bs_eof(bs_t* b) { if (b->p >= b->end) { return 1; } else { return 0; } }
static inline int bs_overrun(bs_t* b) { if (b->p > b->end) { return 1; } else { return 0; } }
static inline int bs_pos(bs_t* b) { if (b->p > b->end) { return (b->end - b->start); } else { return (b->p - b->start); } }
static inline int bs_bytes_left(bs_t* b) { return (b->end - b->p); }
static inline uint32_t bs_read_u1(bs_t* b)
{
uint32_t r = 0;
b->bits_left--;
if (! bs_eof(b))
{
r = ((*(b->p)) >> b->bits_left) & 0x01;
}
if (b->bits_left == 0) { b->p ++; b->bits_left = 8; }
return r;
}
static inline void bs_skip_u1(bs_t* b)
{
b->bits_left--;
if (b->bits_left == 0) { b->p ++; b->bits_left = 8; }
}
static inline uint32_t bs_peek_u1(bs_t* b)
{
uint32_t r = 0;
if (! bs_eof(b))
{
r = ((*(b->p)) >> ( b->bits_left - 1 )) & 0x01;
}
return r;
}
static inline uint32_t bs_read_u(bs_t* b, int n)
{
uint32_t r = 0;
int i;
for (i = 0; i < n; i++)
{
r |= ( bs_read_u1(b) << ( n - i - 1 ) );
}
return r;
}
static inline void bs_skip_u(bs_t* b, int n)
{
int i;
for ( i = 0; i < n; i++ )
{
bs_skip_u1( b );
}
}
static inline uint32_t bs_read_f(bs_t* b, int n) { return bs_read_u(b, n); }
static inline uint32_t bs_read_u8(bs_t* b)
{
#ifdef FAST_U8
if (b->bits_left == 8 && ! bs_eof(b)) // can do fast read
{
uint32_t r = b->p[0];
b->p++;
return r;
}
#endif
return bs_read_u(b, 8);
}
static inline uint32_t bs_read_ue(bs_t* b)
{
int32_t r = 0;
int i = 0;
while( (bs_read_u1(b) == 0) && (i < 32) && (!bs_eof(b)) )
{
i++;
}
r = bs_read_u(b, i);
r += (1 << i) - 1;
return r;
}
static inline int32_t bs_read_se(bs_t* b)
{
int32_t r = bs_read_ue(b);
if (r & 0x01)
{
r = (r+1)/2;
}
else
{
r = -(r/2);
}
return r;
}
static inline void bs_write_u1(bs_t* b, uint32_t v)
{
b->bits_left--;
if (! bs_eof(b))
{
// FIXME this is slow, but we must clear bit first
// is it better to memset(0) the whole buffer during bs_init() instead?
// if we don't do either, we introduce pretty nasty bugs
(*(b->p)) &= ~(0x01 << b->bits_left);
(*(b->p)) |= ((v & 0x01) << b->bits_left);
}
if (b->bits_left == 0) { b->p ++; b->bits_left = 8; }
}
static inline void bs_write_u(bs_t* b, int n, uint32_t v)
{
int i;
for (i = 0; i < n; i++)
{
bs_write_u1(b, (v >> ( n - i - 1 ))&0x01 );
}
}
static inline void bs_write_f(bs_t* b, int n, uint32_t v) { bs_write_u(b, n, v); }
static inline void bs_write_u8(bs_t* b, uint32_t v)
{
#ifdef FAST_U8
if (b->bits_left == 8 && ! bs_eof(b)) // can do fast write
{
b->p[0] = v;
b->p++;
return;
}
#endif
bs_write_u(b, 8, v);
}
static inline void bs_write_ue(bs_t* b, uint32_t v)
{
static const int len_table[256] =
{
1,
1,
2,2,
3,3,3,3,
4,4,4,4,4,4,4,4,
5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,
6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,
6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,
7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,
7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,
7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,
7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,
8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,
8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,
8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,
8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,
8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,
8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,
8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,
8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,
};
int len;
if (v == 0)
{
bs_write_u1(b, 1);
}
else
{
v++;
if (v >= 0x01000000)
{
len = 24 + len_table[ v >> 24 ];
}
else if(v >= 0x00010000)
{
len = 16 + len_table[ v >> 16 ];
}
else if(v >= 0x00000100)
{
len = 8 + len_table[ v >> 8 ];
}
else
{
len = len_table[ v ];
}
bs_write_u(b, 2*len-1, v);
}
}
static inline void bs_write_se(bs_t* b, int32_t v)
{
if (v <= 0)
{
bs_write_ue(b, -v*2);
}
else
{
bs_write_ue(b, v*2 - 1);
}
}
static inline int bs_read_bytes(bs_t* b, uint8_t* buf, int len)
{
int actual_len = len;
if (b->end - b->p < actual_len) { actual_len = b->end - b->p; }
if (actual_len < 0) { actual_len = 0; }
memcpy(buf, b->p, actual_len);
if (len < 0) { len = 0; }
b->p += len;
return actual_len;
}
static inline int bs_write_bytes(bs_t* b, uint8_t* buf, int len)
{
int actual_len = len;
if (b->end - b->p < actual_len) { actual_len = b->end - b->p; }
if (actual_len < 0) { actual_len = 0; }
memcpy(b->p, buf, actual_len);
if (len < 0) { len = 0; }
b->p += len;
return actual_len;
}
static inline int bs_skip_bytes(bs_t* b, int len)
{
int actual_len = len;
if (b->end - b->p < actual_len) { actual_len = b->end - b->p; }
if (actual_len < 0) { actual_len = 0; }
if (len < 0) { len = 0; }
b->p += len;
return actual_len;
}
static inline uint32_t bs_next_bits(bs_t* bs, int nbits)
{
bs_t b;
bs_clone(&b,bs);
return bs_read_u(&b, nbits);
}
static inline uint64_t bs_next_bytes(bs_t* bs, int nbytes)
{
int i = 0;
uint64_t val = 0;
if ( (nbytes > 8) || (nbytes < 1) ) { return 0; }
if (bs->p + nbytes > bs->end) { return 0; }
for ( i = 0; i < nbytes; i++ ) { val = ( val << 8 ) | bs->p[i]; }
return val;
}
#define bs_print_state(b) fprintf( stderr, "%s:%d@%s: b->p=0x%02hhX, b->left = %d\n", __FILE__, __LINE__, __FUNCTION__, *b->p, b->bits_left )
#ifdef __cplusplus
}
#endif
#endif

296
h264bitstream/h264_nal.c Normal file
View File

@ -0,0 +1,296 @@
/*
* h264bitstream - a library for reading and writing H.264 video
* Copyright (C) 2005-2007 Auroras Entertainment, LLC
* Copyright (C) 2008-2011 Avail-TVN
*
* Written by Alex Izvorski <aizvorski@gmail.com> and Alex Giladi <alex.giladi@gmail.com>
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include <stdint.h>
#include <stdlib.h>
#include <stdio.h>
#include "bs.h"
#include "h264_stream.h"
#include "h264_sei.h"
/**
Create a new H264 stream object. Allocates all structures contained within it.
@return the stream object
*/
h264_stream_t* h264_new()
{
h264_stream_t* h = (h264_stream_t*)calloc(1, sizeof(h264_stream_t));
h->nal = (nal_t*)calloc(1, sizeof(nal_t));
// initialize tables
for ( int i = 0; i < 32; i++ ) { h->sps_table[i] = (sps_t*)calloc(1, sizeof(sps_t)); }
for ( int i = 0; i < 256; i++ ) { h->pps_table[i] = (pps_t*)calloc(1, sizeof(pps_t)); }
h->sps = h->sps_table[0];
h->pps = h->pps_table[0];
h->aud = (aud_t*)calloc(1, sizeof(aud_t));
h->num_seis = 0;
h->seis = NULL;
h->sei = NULL; //This is a TEMP pointer at whats in h->seis...
h->sh = (slice_header_t*)calloc(1, sizeof(slice_header_t));
h->slice_data = (slice_data_rbsp_t*)calloc(1, sizeof(slice_data_rbsp_t));
return h;
}
/**
Free an existing H264 stream object. Frees all contained structures.
@param[in,out] h the stream object
*/
void h264_free(h264_stream_t* h)
{
free(h->nal);
for ( int i = 0; i < 32; i++ ) { free( h->sps_table[i] ); }
for ( int i = 0; i < 256; i++ ) { free( h->pps_table[i] ); }
free(h->aud);
if(h->seis != NULL)
{
for( int i = 0; i < h->num_seis; i++ )
{
sei_t* sei = h->seis[i];
sei_free(sei);
}
free(h->seis);
}
free(h->sh);
free(h);
}
/**
Find the beginning and end of a NAL (Network Abstraction Layer) unit in a byte buffer containing H264 bitstream data.
@param[in] buf the buffer
@param[in] size the size of the buffer
@param[out] nal_start the beginning offset of the nal
@param[out] nal_end the end offset of the nal
@return the length of the nal, or 0 if did not find start of nal, or -1 if did not find end of nal
*/
// DEPRECATED - this will be replaced by a similar function with a slightly different API
int find_nal_unit(uint8_t* buf, int size, int* nal_start, int* nal_end)
{
int i;
// find start
*nal_start = 0;
*nal_end = 0;
i = 0;
while ( //( next_bits( 24 ) != 0x000001 && next_bits( 32 ) != 0x00000001 )
(buf[i] != 0 || buf[i+1] != 0 || buf[i+2] != 0x01) &&
(buf[i] != 0 || buf[i+1] != 0 || buf[i+2] != 0 || buf[i+3] != 0x01)
)
{
i++; // skip leading zero
if (i+4 >= size) { return 0; } // did not find nal start
}
if (buf[i] != 0 || buf[i+1] != 0 || buf[i+2] != 0x01) // ( next_bits( 24 ) != 0x000001 )
{
i++;
}
if (buf[i] != 0 || buf[i+1] != 0 || buf[i+2] != 0x01) { /* error, should never happen */ return 0; }
i+= 3;
*nal_start = i;
while ( //( next_bits( 24 ) != 0x000000 && next_bits( 24 ) != 0x000001 )
(buf[i] != 0 || buf[i+1] != 0 || buf[i+2] != 0) &&
(buf[i] != 0 || buf[i+1] != 0 || buf[i+2] != 0x01)
)
{
i++;
// FIXME the next line fails when reading a nal that ends exactly at the end of the data
if (i+3 >= size) { *nal_end = size; return -1; } // did not find nal end, stream ended first
}
*nal_end = i;
return (*nal_end - *nal_start);
}
/**
Convert RBSP data to NAL data (Annex B format).
The size of nal_buf must be 4/3 * the size of the rbsp_buf (rounded up) to guarantee the output will fit.
If that is not true, output may be truncated and an error will be returned.
If that is true, there is no possible error during this conversion.
@param[in] rbsp_buf the rbsp data
@param[in] rbsp_size pointer to the size of the rbsp data
@param[in,out] nal_buf allocated memory in which to put the nal data
@param[in,out] nal_size as input, pointer to the maximum size of the nal data; as output, filled in with the actual size of the nal data
@return actual size of nal data, or -1 on error
*/
// 7.3.1 NAL unit syntax
// 7.4.1.1 Encapsulation of an SODB within an RBSP
int rbsp_to_nal(const uint8_t* rbsp_buf, const int* rbsp_size, uint8_t* nal_buf, int* nal_size)
{
int i;
int j = 1;
int count = 0;
if (*nal_size > 0) { nal_buf[0] = 0x00; } // zero out first byte since we start writing from second byte
for ( i = 0; i < *rbsp_size ; i++ )
{
if ( j >= *nal_size )
{
// error, not enough space
return -1;
}
if ( ( count == 2 ) && !(rbsp_buf[i] & 0xFC) ) // HACK 0xFC
{
nal_buf[j] = 0x03;
j++;
count = 0;
}
nal_buf[j] = rbsp_buf[i];
if ( rbsp_buf[i] == 0x00 )
{
count++;
}
else
{
count = 0;
}
j++;
}
*nal_size = j;
return j;
}
/**
Convert NAL data (Annex B format) to RBSP data.
The size of rbsp_buf must be the same as size of the nal_buf to guarantee the output will fit.
If that is not true, output may be truncated and an error will be returned.
Additionally, certain byte sequences in the input nal_buf are not allowed in the spec and also cause the conversion to fail and an error to be returned.
@param[in] nal_buf the nal data
@param[in,out] nal_size as input, pointer to the size of the nal data; as output, filled in with the actual size of the nal data
@param[in,out] rbsp_buf allocated memory in which to put the rbsp data
@param[in,out] rbsp_size as input, pointer to the maximum size of the rbsp data; as output, filled in with the actual size of rbsp data
@return actual size of rbsp data, or -1 on error
*/
// 7.3.1 NAL unit syntax
// 7.4.1.1 Encapsulation of an SODB within an RBSP
int nal_to_rbsp(const uint8_t* nal_buf, int* nal_size, uint8_t* rbsp_buf, int* rbsp_size)
{
int i;
int j = 0;
int count = 0;
for( i = 0; i < *nal_size; i++ )
{
// in NAL unit, 0x000000, 0x000001 or 0x000002 shall not occur at any byte-aligned position
if( ( count == 2 ) && ( nal_buf[i] < 0x03) )
{
return -1;
}
if( ( count == 2 ) && ( nal_buf[i] == 0x03) )
{
// check the 4th byte after 0x000003, except when cabac_zero_word is used, in which case the last three bytes of this NAL unit must be 0x000003
if((i < *nal_size - 1) && (nal_buf[i+1] > 0x03))
{
return -1;
}
// if cabac_zero_word is used, the final byte of this NAL unit(0x03) is discarded, and the last two bytes of RBSP must be 0x0000
if(i == *nal_size - 1)
{
break;
}
i++;
count = 0;
}
if ( j >= *rbsp_size )
{
// error, not enough space
return -1;
}
rbsp_buf[j] = nal_buf[i];
if(nal_buf[i] == 0x00)
{
count++;
}
else
{
count = 0;
}
j++;
}
*nal_size = i;
*rbsp_size = j;
return j;
}
/**
Read only the NAL headers (enough to determine unit type) from a byte buffer.
@return unit type if read successfully, or -1 if this doesn't look like a nal
*/
int peek_nal_unit(h264_stream_t* h, uint8_t* buf, int size)
{
nal_t* nal = h->nal;
bs_t* b = bs_new(buf, size);
nal->forbidden_zero_bit = bs_read_f(b,1);
nal->nal_ref_idc = bs_read_u(b,2);
nal->nal_unit_type = bs_read_u(b,5);
bs_free(b);
// basic verification, per 7.4.1
if ( nal->forbidden_zero_bit ) { return -1; }
if ( nal->nal_unit_type <= 0 || nal->nal_unit_type > 20 ) { return -1; }
if ( nal->nal_unit_type > 15 && nal->nal_unit_type < 19 ) { return -1; }
if ( nal->nal_ref_idc == 0 )
{
if ( nal->nal_unit_type == NAL_UNIT_TYPE_CODED_SLICE_IDR )
{
return -1;
}
}
else
{
if ( nal->nal_unit_type == NAL_UNIT_TYPE_SEI ||
nal->nal_unit_type == NAL_UNIT_TYPE_AUD ||
nal->nal_unit_type == NAL_UNIT_TYPE_END_OF_SEQUENCE ||
nal->nal_unit_type == NAL_UNIT_TYPE_END_OF_STREAM ||
nal->nal_unit_type == NAL_UNIT_TYPE_FILLER )
{
return -1;
}
}
return nal->nal_unit_type;
}

86
h264bitstream/h264_sei.c Normal file
View File

@ -0,0 +1,86 @@
/*
* h264bitstream - a library for reading and writing H.264 video
* Copyright (C) 2005-2007 Auroras Entertainment, LLC
* Copyright (C) 2008-2011 Avail-TVN
*
* Written by Alex Izvorski <aizvorski@gmail.com> and Alex Giladi <alex.giladi@gmail.com>
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "bs.h"
#include "h264_stream.h"
#include "h264_sei.h"
#include <stdio.h>
#include <stdlib.h> // malloc
#include <string.h> // memset
sei_t* sei_new()
{
sei_t* s = (sei_t*)malloc(sizeof(sei_t));
memset(s, 0, sizeof(sei_t));
s->payload = NULL;
return s;
}
void sei_free(sei_t* s)
{
if ( s->payload != NULL ) free(s->payload);
free(s);
}
void read_sei_end_bits(h264_stream_t* h, bs_t* b )
{
// if the message doesn't end at a byte border
if ( !bs_byte_aligned( b ) )
{
if ( !bs_read_u1( b ) ) fprintf(stderr, "WARNING: bit_equal_to_one is 0!!!!\n");
while ( ! bs_byte_aligned( b ) )
{
if ( bs_read_u1( b ) ) fprintf(stderr, "WARNING: bit_equal_to_zero is 1!!!!\n");
}
}
read_rbsp_trailing_bits(h, b);
}
// D.1 SEI payload syntax
void read_sei_payload(h264_stream_t* h, bs_t* b, int payloadType, int payloadSize)
{
sei_t* s = h->sei;
s->payload = (uint8_t*)malloc(payloadSize);
int i;
for ( i = 0; i < payloadSize; i++ )
s->payload[i] = bs_read_u(b, 8);
//read_sei_end_bits(h, b);
}
// D.1 SEI payload syntax
void write_sei_payload(h264_stream_t* h, bs_t* b, int payloadType, int payloadSize)
{
sei_t* s = h->sei;
int i;
for ( i = 0; i < s->payloadSize; i++ )
bs_write_u(b, 8, s->payload[i]);
}

74
h264bitstream/h264_sei.h Normal file
View File

@ -0,0 +1,74 @@
/*
* h264bitstream - a library for reading and writing H.264 video
* Copyright (C) 2005-2007 Auroras Entertainment, LLC
* Copyright (C) 2008-2011 Avail-TVN
*
* Written by Alex Izvorski <aizvorski@gmail.com> and Alex Giladi <alex.giladi@gmail.com>
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include <stdint.h>
#ifndef _H264_SEI_H
#define _H264_SEI_H 1
#include <stdint.h>
#include "bs.h"
#ifdef __cplusplus
extern "C" {
#endif
typedef struct
{
int payloadType;
int payloadSize;
uint8_t* payload;
} sei_t;
sei_t* sei_new();
void sei_free(sei_t* s);
//D.1 SEI payload syntax
#define SEI_TYPE_BUFFERING_PERIOD 0
#define SEI_TYPE_PIC_TIMING 1
#define SEI_TYPE_PAN_SCAN_RECT 2
#define SEI_TYPE_FILLER_PAYLOAD 3
#define SEI_TYPE_USER_DATA_REGISTERED_ITU_T_T35 4
#define SEI_TYPE_USER_DATA_UNREGISTERED 5
#define SEI_TYPE_RECOVERY_POINT 6
#define SEI_TYPE_DEC_REF_PIC_MARKING_REPETITION 7
#define SEI_TYPE_SPARE_PIC 8
#define SEI_TYPE_SCENE_INFO 9
#define SEI_TYPE_SUB_SEQ_INFO 10
#define SEI_TYPE_SUB_SEQ_LAYER_CHARACTERISTICS 11
#define SEI_TYPE_SUB_SEQ_CHARACTERISTICS 12
#define SEI_TYPE_FULL_FRAME_FREEZE 13
#define SEI_TYPE_FULL_FRAME_FREEZE_RELEASE 14
#define SEI_TYPE_FULL_FRAME_SNAPSHOT 15
#define SEI_TYPE_PROGRESSIVE_REFINEMENT_SEGMENT_START 16
#define SEI_TYPE_PROGRESSIVE_REFINEMENT_SEGMENT_END 17
#define SEI_TYPE_MOTION_CONSTRAINED_SLICE_GROUP_SET 18
#define SEI_TYPE_FILM_GRAIN_CHARACTERISTICS 19
#define SEI_TYPE_DEBLOCKING_FILTER_DISPLAY_PREFERENCE 20
#define SEI_TYPE_STEREO_VIDEO_INFO 21
#ifdef __cplusplus
}
#endif
#endif

2788
h264bitstream/h264_stream.c Normal file

File diff suppressed because it is too large Load Diff

544
h264bitstream/h264_stream.h Normal file
View File

@ -0,0 +1,544 @@
/*
* h264bitstream - a library for reading and writing H.264 video
* Copyright (C) 2005-2007 Auroras Entertainment, LLC
* Copyright (C) 2008-2011 Avail-TVN
*
* Written by Alex Izvorski <aizvorski@gmail.com> and Alex Giladi <alex.giladi@gmail.com>
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#ifndef _H264_STREAM_H
#define _H264_STREAM_H 1
#include <stdint.h>
#include <stdio.h>
#include <assert.h>
#include "bs.h"
#include "h264_sei.h"
#ifdef __cplusplus
extern "C" {
#endif
/**
Sequence Parameter Set
@see 7.3.2.1 Sequence parameter set RBSP syntax
@see read_seq_parameter_set_rbsp
@see write_seq_parameter_set_rbsp
@see debug_sps
*/
typedef struct
{
int profile_idc;
int constraint_set0_flag;
int constraint_set1_flag;
int constraint_set2_flag;
int constraint_set3_flag;
int constraint_set4_flag;
int constraint_set5_flag;
int reserved_zero_2bits;
int level_idc;
int seq_parameter_set_id;
int chroma_format_idc;
int residual_colour_transform_flag;
int bit_depth_luma_minus8;
int bit_depth_chroma_minus8;
int qpprime_y_zero_transform_bypass_flag;
int seq_scaling_matrix_present_flag;
int seq_scaling_list_present_flag[8];
int* ScalingList4x4[6];
int UseDefaultScalingMatrix4x4Flag[6];
int* ScalingList8x8[2];
int UseDefaultScalingMatrix8x8Flag[2];
int log2_max_frame_num_minus4;
int pic_order_cnt_type;
int log2_max_pic_order_cnt_lsb_minus4;
int delta_pic_order_always_zero_flag;
int offset_for_non_ref_pic;
int offset_for_top_to_bottom_field;
int num_ref_frames_in_pic_order_cnt_cycle;
int offset_for_ref_frame[256];
int num_ref_frames;
int gaps_in_frame_num_value_allowed_flag;
int pic_width_in_mbs_minus1;
int pic_height_in_map_units_minus1;
int frame_mbs_only_flag;
int mb_adaptive_frame_field_flag;
int direct_8x8_inference_flag;
int frame_cropping_flag;
int frame_crop_left_offset;
int frame_crop_right_offset;
int frame_crop_top_offset;
int frame_crop_bottom_offset;
int vui_parameters_present_flag;
struct
{
int aspect_ratio_info_present_flag;
int aspect_ratio_idc;
int sar_width;
int sar_height;
int overscan_info_present_flag;
int overscan_appropriate_flag;
int video_signal_type_present_flag;
int video_format;
int video_full_range_flag;
int colour_description_present_flag;
int colour_primaries;
int transfer_characteristics;
int matrix_coefficients;
int chroma_loc_info_present_flag;
int chroma_sample_loc_type_top_field;
int chroma_sample_loc_type_bottom_field;
int timing_info_present_flag;
int num_units_in_tick;
int time_scale;
int fixed_frame_rate_flag;
int nal_hrd_parameters_present_flag;
int vcl_hrd_parameters_present_flag;
int low_delay_hrd_flag;
int pic_struct_present_flag;
int bitstream_restriction_flag;
int motion_vectors_over_pic_boundaries_flag;
int max_bytes_per_pic_denom;
int max_bits_per_mb_denom;
int log2_max_mv_length_horizontal;
int log2_max_mv_length_vertical;
int num_reorder_frames;
int max_dec_frame_buffering;
} vui;
struct
{
int cpb_cnt_minus1;
int bit_rate_scale;
int cpb_size_scale;
int bit_rate_value_minus1[32]; // up to cpb_cnt_minus1, which is <= 31
int cpb_size_value_minus1[32];
int cbr_flag[32];
int initial_cpb_removal_delay_length_minus1;
int cpb_removal_delay_length_minus1;
int dpb_output_delay_length_minus1;
int time_offset_length;
} hrd;
} sps_t;
/**
Picture Parameter Set
@see 7.3.2.2 Picture parameter set RBSP syntax
@see read_pic_parameter_set_rbsp
@see write_pic_parameter_set_rbsp
@see debug_pps
*/
typedef struct
{
int pic_parameter_set_id;
int seq_parameter_set_id;
int entropy_coding_mode_flag;
int pic_order_present_flag;
int num_slice_groups_minus1;
int slice_group_map_type;
int run_length_minus1[8]; // up to num_slice_groups_minus1, which is <= 7 in Baseline and Extended, 0 otheriwse
int top_left[8];
int bottom_right[8];
int slice_group_change_direction_flag;
int slice_group_change_rate_minus1;
int pic_size_in_map_units_minus1;
int slice_group_id[256]; // FIXME what size?
int num_ref_idx_l0_active_minus1;
int num_ref_idx_l1_active_minus1;
int weighted_pred_flag;
int weighted_bipred_idc;
int pic_init_qp_minus26;
int pic_init_qs_minus26;
int chroma_qp_index_offset;
int deblocking_filter_control_present_flag;
int constrained_intra_pred_flag;
int redundant_pic_cnt_present_flag;
// set iff we carry any of the optional headers
int _more_rbsp_data_present;
int transform_8x8_mode_flag;
int pic_scaling_matrix_present_flag;
int pic_scaling_list_present_flag[8];
int* ScalingList4x4[6];
int UseDefaultScalingMatrix4x4Flag[6];
int* ScalingList8x8[2];
int UseDefaultScalingMatrix8x8Flag[2];
int second_chroma_qp_index_offset;
} pps_t;
/**
Slice Header
@see 7.3.3 Slice header syntax
@see read_slice_header_rbsp
@see write_slice_header_rbsp
@see debug_slice_header_rbsp
*/
typedef struct
{
int first_mb_in_slice;
int slice_type;
int pic_parameter_set_id;
int frame_num;
int field_pic_flag;
int bottom_field_flag;
int idr_pic_id;
int pic_order_cnt_lsb;
int delta_pic_order_cnt_bottom;
int delta_pic_order_cnt[ 2 ];
int redundant_pic_cnt;
int direct_spatial_mv_pred_flag;
int num_ref_idx_active_override_flag;
int num_ref_idx_l0_active_minus1;
int num_ref_idx_l1_active_minus1;
int cabac_init_idc;
int slice_qp_delta;
int sp_for_switch_flag;
int slice_qs_delta;
int disable_deblocking_filter_idc;
int slice_alpha_c0_offset_div2;
int slice_beta_offset_div2;
int slice_group_change_cycle;
struct
{
int luma_log2_weight_denom;
int chroma_log2_weight_denom;
int luma_weight_l0_flag[64];
int luma_weight_l0[64];
int luma_offset_l0[64];
int chroma_weight_l0_flag[64];
int chroma_weight_l0[64][2];
int chroma_offset_l0[64][2];
int luma_weight_l1_flag[64];
int luma_weight_l1[64];
int luma_offset_l1[64];
int chroma_weight_l1_flag[64];
int chroma_weight_l1[64][2];
int chroma_offset_l1[64][2];
} pwt; // predictive weight table
// TODO check max index
// TODO array of structs instead of struct of arrays
struct
{
int ref_pic_list_reordering_flag_l0;
struct
{
int reordering_of_pic_nums_idc[64];
int abs_diff_pic_num_minus1[64];
int long_term_pic_num[64];
} reorder_l0;
int ref_pic_list_reordering_flag_l1;
struct
{
int reordering_of_pic_nums_idc[64];
int abs_diff_pic_num_minus1[64];
int long_term_pic_num[64];
} reorder_l1;
} rplr; // ref pic list reorder
struct
{
int no_output_of_prior_pics_flag;
int long_term_reference_flag;
int adaptive_ref_pic_marking_mode_flag;
int memory_management_control_operation[64];
int difference_of_pic_nums_minus1[64];
int long_term_pic_num[64];
int long_term_frame_idx[64];
int max_long_term_frame_idx_plus1[64];
} drpm; // decoded ref pic marking
} slice_header_t;
/**
Access unit delimiter
@see 7.3.1 NAL unit syntax
@see read_nal_unit
@see write_nal_unit
@see debug_nal
*/
typedef struct
{
int primary_pic_type;
} aud_t;
/**
Network Abstraction Layer (NAL) unit
@see 7.3.1 NAL unit syntax
@see read_nal_unit
@see write_nal_unit
@see debug_nal
*/
typedef struct
{
int forbidden_zero_bit;
int nal_ref_idc;
int nal_unit_type;
void* parsed; // FIXME
int sizeof_parsed;
//uint8_t* rbsp_buf;
//int rbsp_size;
} nal_t;
typedef struct
{
int _is_initialized;
int sps_id;
int initial_cpb_removal_delay;
int initial_cpb_delay_offset;
} sei_buffering_t;
typedef struct
{
int clock_timestamp_flag;
int ct_type;
int nuit_field_based_flag;
int counting_type;
int full_timestamp_flag;
int discontinuity_flag;
int cnt_dropped_flag;
int n_frames;
int seconds_value;
int minutes_value;
int hours_value;
int seconds_flag;
int minutes_flag;
int hours_flag;
int time_offset;
} picture_timestamp_t;
typedef struct
{
int _is_initialized;
int cpb_removal_delay;
int dpb_output_delay;
int pic_struct;
picture_timestamp_t clock_timestamps[3]; // 3 is the maximum possible value
} sei_picture_timing_t;
typedef struct
{
int rbsp_size;
uint8_t* rbsp_buf;
} slice_data_rbsp_t;
/**
H264 stream
Contains data structures for all NAL types that can be handled by this library.
When reading, data is read into those, and when writing it is written from those.
The reason why they are all contained in one place is that some of them depend on others, we need to
have all of them available to read or write correctly.
*/
typedef struct
{
nal_t* nal;
sps_t* sps;
pps_t* pps;
aud_t* aud;
sei_t* sei; //This is a TEMP pointer at whats in h->seis...
int num_seis;
slice_header_t* sh;
slice_data_rbsp_t* slice_data;
sps_t* sps_table[32];
pps_t* pps_table[256];
sei_t** seis;
} h264_stream_t;
h264_stream_t* h264_new();
void h264_free(h264_stream_t* h);
int find_nal_unit(uint8_t* buf, int size, int* nal_start, int* nal_end);
int rbsp_to_nal(const uint8_t* rbsp_buf, const int* rbsp_size, uint8_t* nal_buf, int* nal_size);
int nal_to_rbsp(const uint8_t* nal_buf, int* nal_size, uint8_t* rbsp_buf, int* rbsp_size);
int read_nal_unit(h264_stream_t* h, uint8_t* buf, int size);
int peek_nal_unit(h264_stream_t* h, uint8_t* buf, int size);
void read_seq_parameter_set_rbsp(h264_stream_t* h, bs_t* b);
void read_scaling_list(bs_t* b, int* scalingList, int sizeOfScalingList, int* useDefaultScalingMatrixFlag );
void read_vui_parameters(h264_stream_t* h, bs_t* b);
void read_hrd_parameters(h264_stream_t* h, bs_t* b);
void read_pic_parameter_set_rbsp(h264_stream_t* h, bs_t* b);
void read_sei_rbsp(h264_stream_t* h, bs_t* b);
void read_sei_message(h264_stream_t* h, bs_t* b);
void read_access_unit_delimiter_rbsp(h264_stream_t* h, bs_t* b);
void read_end_of_seq_rbsp(h264_stream_t* h, bs_t* b);
void read_end_of_stream_rbsp(h264_stream_t* h, bs_t* b);
void read_filler_data_rbsp(h264_stream_t* h, bs_t* b);
void read_slice_layer_rbsp(h264_stream_t* h, bs_t* b);
void read_rbsp_slice_trailing_bits(h264_stream_t* h, bs_t* b);
void read_rbsp_trailing_bits(h264_stream_t* h, bs_t* b);
void read_slice_header(h264_stream_t* h, bs_t* b);
void read_ref_pic_list_reordering(h264_stream_t* h, bs_t* b);
void read_pred_weight_table(h264_stream_t* h, bs_t* b);
void read_dec_ref_pic_marking(h264_stream_t* h, bs_t* b);
int more_rbsp_trailing_data(h264_stream_t* h, bs_t* b);
int write_nal_unit(h264_stream_t* h, uint8_t* buf, int size);
void write_seq_parameter_set_rbsp(h264_stream_t* h, bs_t* b);
void write_scaling_list(bs_t* b, int* scalingList, int sizeOfScalingList, int* useDefaultScalingMatrixFlag );
void write_vui_parameters(h264_stream_t* h, bs_t* b);
void write_hrd_parameters(h264_stream_t* h, bs_t* b);
void write_pic_parameter_set_rbsp(h264_stream_t* h, bs_t* b);
void write_sei_rbsp(h264_stream_t* h, bs_t* b);
void write_sei_message(h264_stream_t* h, bs_t* b);
void write_access_unit_delimiter_rbsp(h264_stream_t* h, bs_t* b);
void write_end_of_seq_rbsp(h264_stream_t* h, bs_t* b);
void write_end_of_stream_rbsp(h264_stream_t* h, bs_t* b);
void write_filler_data_rbsp(h264_stream_t* h, bs_t* b);
void write_slice_layer_rbsp(h264_stream_t* h, bs_t* b);
void write_rbsp_slice_trailing_bits(h264_stream_t* h, bs_t* b);
void write_rbsp_trailing_bits(h264_stream_t* h, bs_t* b);
void write_slice_header(h264_stream_t* h, bs_t* b);
void write_ref_pic_list_reordering(h264_stream_t* h, bs_t* b);
void write_pred_weight_table(h264_stream_t* h, bs_t* b);
void write_dec_ref_pic_marking(h264_stream_t* h, bs_t* b);
int read_debug_nal_unit(h264_stream_t* h, uint8_t* buf, int size);
void debug_sps(sps_t* sps);
void debug_pps(pps_t* pps);
void debug_slice_header(slice_header_t* sh);
void debug_nal(h264_stream_t* h, nal_t* nal);
void debug_bytes(uint8_t* buf, int len);
void read_sei_payload( h264_stream_t* h, bs_t* b, int payloadType, int payloadSize);
void write_sei_payload( h264_stream_t* h, bs_t* b, int payloadType, int payloadSize);
//NAL ref idc codes
#define NAL_REF_IDC_PRIORITY_HIGHEST 3
#define NAL_REF_IDC_PRIORITY_HIGH 2
#define NAL_REF_IDC_PRIORITY_LOW 1
#define NAL_REF_IDC_PRIORITY_DISPOSABLE 0
//Table 7-1 NAL unit type codes
#define NAL_UNIT_TYPE_UNSPECIFIED 0 // Unspecified
#define NAL_UNIT_TYPE_CODED_SLICE_NON_IDR 1 // Coded slice of a non-IDR picture
#define NAL_UNIT_TYPE_CODED_SLICE_DATA_PARTITION_A 2 // Coded slice data partition A
#define NAL_UNIT_TYPE_CODED_SLICE_DATA_PARTITION_B 3 // Coded slice data partition B
#define NAL_UNIT_TYPE_CODED_SLICE_DATA_PARTITION_C 4 // Coded slice data partition C
#define NAL_UNIT_TYPE_CODED_SLICE_IDR 5 // Coded slice of an IDR picture
#define NAL_UNIT_TYPE_SEI 6 // Supplemental enhancement information (SEI)
#define NAL_UNIT_TYPE_SPS 7 // Sequence parameter set
#define NAL_UNIT_TYPE_PPS 8 // Picture parameter set
#define NAL_UNIT_TYPE_AUD 9 // Access unit delimiter
#define NAL_UNIT_TYPE_END_OF_SEQUENCE 10 // End of sequence
#define NAL_UNIT_TYPE_END_OF_STREAM 11 // End of stream
#define NAL_UNIT_TYPE_FILLER 12 // Filler data
#define NAL_UNIT_TYPE_SPS_EXT 13 // Sequence parameter set extension
// 14..18 // Reserved
#define NAL_UNIT_TYPE_CODED_SLICE_AUX 19 // Coded slice of an auxiliary coded picture without partitioning
// 20..23 // Reserved
// 24..31 // Unspecified
//7.4.3 Table 7-6. Name association to slice_type
#define SH_SLICE_TYPE_P 0 // P (P slice)
#define SH_SLICE_TYPE_B 1 // B (B slice)
#define SH_SLICE_TYPE_I 2 // I (I slice)
#define SH_SLICE_TYPE_SP 3 // SP (SP slice)
#define SH_SLICE_TYPE_SI 4 // SI (SI slice)
//as per footnote to Table 7-6, the *_ONLY slice types indicate that all other slices in that picture are of the same type
#define SH_SLICE_TYPE_P_ONLY 5 // P (P slice)
#define SH_SLICE_TYPE_B_ONLY 6 // B (B slice)
#define SH_SLICE_TYPE_I_ONLY 7 // I (I slice)
#define SH_SLICE_TYPE_SP_ONLY 8 // SP (SP slice)
#define SH_SLICE_TYPE_SI_ONLY 9 // SI (SI slice)
//Appendix E. Table E-1 Meaning of sample aspect ratio indicator
#define SAR_Unspecified 0 // Unspecified
#define SAR_1_1 1 // 1:1
#define SAR_12_11 2 // 12:11
#define SAR_10_11 3 // 10:11
#define SAR_16_11 4 // 16:11
#define SAR_40_33 5 // 40:33
#define SAR_24_11 6 // 24:11
#define SAR_20_11 7 // 20:11
#define SAR_32_11 8 // 32:11
#define SAR_80_33 9 // 80:33
#define SAR_18_11 10 // 18:11
#define SAR_15_11 11 // 15:11
#define SAR_64_33 12 // 64:33
#define SAR_160_99 13 // 160:99
// 14..254 Reserved
#define SAR_Extended 255 // Extended_SAR
//7.4.3.1 Table 7-7 reordering_of_pic_nums_idc operations for reordering of reference picture lists
#define RPLR_IDC_ABS_DIFF_ADD 0
#define RPLR_IDC_ABS_DIFF_SUBTRACT 1
#define RPLR_IDC_LONG_TERM 2
#define RPLR_IDC_END 3
//7.4.3.3 Table 7-9 Memory management control operation (memory_management_control_operation) values
#define MMCO_END 0
#define MMCO_SHORT_TERM_UNUSED 1
#define MMCO_LONG_TERM_UNUSED 2
#define MMCO_SHORT_TERM_TO_LONG_TERM 3
#define MMCO_LONG_TERM_MAX_INDEX 4
#define MMCO_ALL_UNUSED 5
#define MMCO_CURRENT_TO_LONG_TERM 6
//7.4.2.4 Table 7-5 Meaning of primary_pic_type
#define AUD_PRIMARY_PIC_TYPE_I 0 // I
#define AUD_PRIMARY_PIC_TYPE_IP 1 // I, P
#define AUD_PRIMARY_PIC_TYPE_IPB 2 // I, P, B
#define AUD_PRIMARY_PIC_TYPE_SI 3 // SI
#define AUD_PRIMARY_PIC_TYPE_SISP 4 // SI, SP
#define AUD_PRIMARY_PIC_TYPE_ISI 5 // I, SI
#define AUD_PRIMARY_PIC_TYPE_ISIPSP 6 // I, SI, P, SP
#define AUD_PRIMARY_PIC_TYPE_ISIPSPB 7 // I, SI, P, SP, B
#define H264_PROFILE_BASELINE 66
#define H264_PROFILE_MAIN 77
#define H264_PROFILE_EXTENDED 88
#define H264_PROFILE_HIGH 100
// file handle for debug output
extern FILE* h264_dbgfile;
#ifdef __cplusplus
}
#endif
#endif