moonlight-common-c/src/ConnectionTester.c
Cameron Gutman f0dbee171b Consider UDP 48000 as part of RTSP for connection testing
GFE 3.22 requires UDP 48000 communication to complete RTSP handshake
2021-04-09 08:39:28 -05:00

309 lines
11 KiB
C

#include "Limelight-internal.h"
#define TEST_PORT_TIMEOUT_SEC 3
#define VALID_PORT_FLAG_MASK (ML_PORT_FLAG_TCP_47984 | \
ML_PORT_FLAG_TCP_47989 | \
ML_PORT_FLAG_TCP_48010 | \
ML_PORT_FLAG_UDP_47998 | \
ML_PORT_FLAG_UDP_47999 | \
ML_PORT_FLAG_UDP_48000 | \
ML_PORT_FLAG_UDP_48010)
#define PORT_FLAGS_MAX_COUNT 32
#define MTU_TEST_SIZE 1040
unsigned int LiGetPortFlagsFromStage(int stage)
{
switch (stage)
{
case STAGE_RTSP_HANDSHAKE:
// GFE 3.22 requires a successful ping on 48000 to complete RTSP handshake
return ML_PORT_FLAG_TCP_48010 | ML_PORT_FLAG_UDP_48010 | ML_PORT_FLAG_UDP_48000;
case STAGE_CONTROL_STREAM_START:
return ML_PORT_FLAG_UDP_47999;
default:
return 0;
}
}
unsigned int LiGetPortFlagsFromTerminationErrorCode(int errorCode)
{
switch (errorCode)
{
case ML_ERROR_NO_VIDEO_TRAFFIC:
// Video is UDP 47998, but we'll also test UDP 48000 because
// we don't have an equivalent audio traffic error.
return ML_PORT_FLAG_UDP_47998 | ML_PORT_FLAG_UDP_48000;
default:
return 0;
}
}
int LiGetProtocolFromPortFlagIndex(int portFlagIndex)
{
// The lower byte is reserved for TCP
return (portFlagIndex >= 8) ? IPPROTO_UDP : IPPROTO_TCP;
}
unsigned short LiGetPortFromPortFlagIndex(int portFlagIndex)
{
switch (portFlagIndex)
{
// TCP ports
case ML_PORT_INDEX_TCP_47984:
return 47984;
case ML_PORT_INDEX_TCP_47989:
return 47989;
case ML_PORT_INDEX_TCP_48010:
return 48010;
// UDP ports
case ML_PORT_INDEX_UDP_47998:
return 47998;
case ML_PORT_INDEX_UDP_47999:
return 47999;
case ML_PORT_INDEX_UDP_48000:
return 48000;
case ML_PORT_INDEX_UDP_48010:
return 48010;
default:
LC_ASSERT(false);
return 0;
}
}
void LiStringifyPortFlags(unsigned int portFlags, const char* separator, char* outputBuffer, int outputBufferLength)
{
// Initialize the output buffer to an empty string
outputBuffer[0] = 0;
// If there is no separator specified, use an empty string
if (separator == NULL) {
separator = "";
}
int offset = 0;
for (int i = 0; i < PORT_FLAGS_MAX_COUNT; i++) {
if (portFlags & (1U << i)) {
const char* protoStr = LiGetProtocolFromPortFlagIndex(i) == IPPROTO_UDP ? "UDP" : "TCP";
offset += snprintf(&outputBuffer[offset], outputBufferLength - offset, "%s%s %u",
offset != 0 ? separator : "",
protoStr,
LiGetPortFromPortFlagIndex(i));
if (outputBufferLength - offset <= 0) {
// snprintf() will return the desired length if the buffer is too small,
// so it is possible for this calculation to be negative.
break;
}
}
}
}
unsigned int LiTestClientConnectivity(const char* testServer, unsigned short referencePort, unsigned int testPortFlags)
{
unsigned int failingPortFlags;
struct sockaddr_storage address;
SOCKADDR_LEN address_length;
int i;
int err;
SOCKET sockets[PORT_FLAGS_MAX_COUNT];
// Mask out invalid ports from the port flags
testPortFlags &= VALID_PORT_FLAG_MASK;
failingPortFlags = testPortFlags;
// If no ports were specified, just return 0
if (testPortFlags == 0) {
return 0;
}
// Initialize sockets array to -1
memset(sockets, 0xFF, sizeof(sockets));
err = initializePlatformSockets();
if (err != 0) {
Limelog("Failed to initialize sockets: %d\n", err);
return ML_TEST_RESULT_INCONCLUSIVE;
}
err = resolveHostName(testServer, AF_UNSPEC, TCP_PORT_FLAG_ALWAYS_TEST | referencePort, &address, &address_length);
if (err != 0) {
failingPortFlags = ML_TEST_RESULT_INCONCLUSIVE;
goto Exit;
}
for (i = 0; i < PORT_FLAGS_MAX_COUNT; i++) {
if (testPortFlags & (1U << i)) {
sockets[i] = createSocket(address.ss_family,
LiGetProtocolFromPortFlagIndex(i) == IPPROTO_UDP ? SOCK_DGRAM : SOCK_STREAM,
LiGetProtocolFromPortFlagIndex(i),
true);
if (sockets[i] == INVALID_SOCKET) {
err = LastSocketFail();
Limelog("Failed to create socket: %d\n", err);
failingPortFlags = ML_TEST_RESULT_INCONCLUSIVE;
goto Exit;
}
((struct sockaddr_in6*)&address)->sin6_port = htons(LiGetPortFromPortFlagIndex(i));
if (LiGetProtocolFromPortFlagIndex(i) == IPPROTO_TCP) {
// Initiate an asynchronous connection
err = connect(sockets[i], (struct sockaddr*)&address, address_length);
if (err < 0) {
err = (int)LastSocketError();
if (err != EWOULDBLOCK && err != EAGAIN && err != EINPROGRESS) {
Limelog("Failed to start async connect to TCP %u: %d\n", LiGetPortFromPortFlagIndex(i), err);
// Mask off this bit so we don't try to include it in pollSockets() below
testPortFlags &= ~(1U << i);
}
}
}
else {
const char buf[MTU_TEST_SIZE] = "moonlight-ctest";
int j;
// Send a few packets since UDP is unreliable
for (j = 0; j < 3; j++) {
err = sendto(sockets[i], buf, sizeof(buf), 0, (struct sockaddr*)&address, address_length);
if (err < 0) {
err = (int)LastSocketError();
Limelog("Failed to send test packet to UDP %u: %d\n", LiGetPortFromPortFlagIndex(i), err);
// Mask off this bit so we don't try to include it in pollSockets() below
testPortFlags &= ~(1U << i);
break;
}
PltSleepMs(50);
}
}
}
}
// Continue to call pollSockets() until we have no more sockets to wait for,
// or our pollSockets() call times out.
while (testPortFlags != 0) {
int nfds;
struct pollfd pfds[PORT_FLAGS_MAX_COUNT];
nfds = 0;
// Fill out our FD sets
for (i = 0; i < PORT_FLAGS_MAX_COUNT; i++) {
if (testPortFlags & (1U << i)) {
pfds[nfds].fd = sockets[i];
if (LiGetProtocolFromPortFlagIndex(i) == IPPROTO_UDP) {
// Watch for readability on UDP sockets
pfds[nfds].events = POLLIN;
}
else {
// Watch for writeability on TCP sockets
pfds[nfds].events = POLLOUT;
}
nfds++;
}
}
// Wait for the to complete or the timeout to elapse.
// NB: The timeout resets each time we get a valid response on a port,
// but that's probably fine.
err = pollSockets(pfds, nfds, TEST_PORT_TIMEOUT_SEC * 1000);
if (err < 0) {
// pollSockets() failed
err = LastSocketError();
Limelog("pollSockets() failed: %d\n", err);
failingPortFlags = ML_TEST_RESULT_INCONCLUSIVE;
goto Exit;
}
else if (err == 0) {
// pollSockets() timed out
Limelog("Connection timed out after %d seconds\n", TEST_PORT_TIMEOUT_SEC);
break;
}
// We know something was signalled. Now we just need to find out what.
for (i = 0; i < nfds; i++) {
if (pfds[i].revents != 0) {
int portIndex;
// This socket was signalled. Figure out what port it was.
for (portIndex = 0; portIndex < PORT_FLAGS_MAX_COUNT; portIndex++) {
if (sockets[portIndex] == pfds[i].fd) {
LC_ASSERT(testPortFlags & (1U << portIndex));
break;
}
}
LC_ASSERT(portIndex != PORT_FLAGS_MAX_COUNT);
if (LiGetProtocolFromPortFlagIndex(portIndex) == IPPROTO_UDP) {
char buf[MTU_TEST_SIZE];
// A UDP socket was signalled. This could be because we got
// a packet from the test server, or it could be because we
// received an ICMP error which will be given to us from
// recvfrom().
testPortFlags &= ~(1U << portIndex);
// Check if the socket can be successfully read now
err = recvfrom(sockets[portIndex], buf, sizeof(buf), 0, NULL, NULL);
if (err >= 0) {
// The UDP test was a success.
failingPortFlags &= ~(1U << portIndex);
Limelog("UDP port %u test successful\n", LiGetPortFromPortFlagIndex(portIndex));
}
else {
err = LastSocketError();
Limelog("UDP port %u test failed: %d\n", LiGetPortFromPortFlagIndex(portIndex), err);
}
}
else {
// A TCP socket was signalled
SOCKADDR_LEN len = sizeof(err);
getsockopt(sockets[portIndex], SOL_SOCKET, SO_ERROR, (char*)&err, &len);
if (err != 0 || (pfds[i].revents & POLLERR)) {
// Get the error code
err = (err != 0) ? err : LastSocketFail();
}
// The TCP test has completed for this port
testPortFlags &= ~(1U << portIndex);
if (err == 0) {
// The TCP test was a success
failingPortFlags &= ~(1U << portIndex);
Limelog("TCP port %u test successful\n", LiGetPortFromPortFlagIndex(portIndex));
}
else {
Limelog("TCP port %u test failed: %d\n", LiGetPortFromPortFlagIndex(portIndex), err);
}
}
}
}
// Next iteration, we'll remove the matching sockets from our FD set and
// call select() again to wait on the remaining sockets.
}
Exit:
for (i = 0; i < PORT_FLAGS_MAX_COUNT; i++) {
if (sockets[i] != INVALID_SOCKET) {
closeSocket(sockets[i]);
}
}
cleanupPlatformSockets();
return failingPortFlags;
}