moonlight-common-c/src/VideoStream.c
2024-02-17 18:14:03 -06:00

418 lines
15 KiB
C

#include "Limelight-internal.h"
#define FIRST_FRAME_MAX 1500
#define FIRST_FRAME_TIMEOUT_SEC 10
#define FIRST_FRAME_PORT 47996
static RTP_VIDEO_QUEUE rtpQueue;
static SOCKET rtpSocket = INVALID_SOCKET;
static SOCKET firstFrameSocket = INVALID_SOCKET;
static PPLT_CRYPTO_CONTEXT decryptionCtx;
static PLT_THREAD udpPingThread;
static PLT_THREAD receiveThread;
static PLT_THREAD decoderThread;
static bool receivedDataFromPeer;
static uint64_t firstDataTimeMs;
static bool receivedFullFrame;
// We can't request an IDR frame until the depacketizer knows
// that a packet was lost. This timeout bounds the time that
// the RTP queue will wait for missing/reordered packets.
#define RTP_QUEUE_DELAY 10
// This is the desired number of video packets that can be
// stored in the socket's receive buffer. 2048 is chosen
// because it should be large enough for all reasonable
// frame sizes (probably 2 or 3 frames) without using too
// much kernel memory with larger packet sizes. It also
// can smooth over transient pauses in network traffic
// and subsequent packet/frame bursts that follow.
#define RTP_RECV_PACKETS_BUFFERED 2048
// Initialize the video stream
void initializeVideoStream(void) {
initializeVideoDepacketizer(StreamConfig.packetSize);
RtpvInitializeQueue(&rtpQueue);
decryptionCtx = PltCreateCryptoContext();
receivedDataFromPeer = false;
firstDataTimeMs = 0;
receivedFullFrame = false;
}
// Clean up the video stream
void destroyVideoStream(void) {
PltDestroyCryptoContext(decryptionCtx);
destroyVideoDepacketizer();
RtpvCleanupQueue(&rtpQueue);
}
// UDP Ping proc
static void VideoPingThreadProc(void* context) {
char legacyPingData[] = { 0x50, 0x49, 0x4E, 0x47 };
LC_SOCKADDR saddr;
LC_ASSERT(VideoPortNumber != 0);
memcpy(&saddr, &RemoteAddr, sizeof(saddr));
SET_PORT(&saddr, VideoPortNumber);
// We do not check for errors here. Socket errors will be handled
// on the read-side in ReceiveThreadProc(). This avoids potential
// issues related to receiving ICMP port unreachable messages due
// to sending a packet prior to the host PC binding to that port.
int pingCount = 0;
while (!PltIsThreadInterrupted(&udpPingThread)) {
if (VideoPingPayload.payload[0] != 0) {
pingCount++;
VideoPingPayload.sequenceNumber = BE32(pingCount);
sendto(rtpSocket, (char*)&VideoPingPayload, sizeof(VideoPingPayload), 0, (struct sockaddr*)&saddr, AddrLen);
}
else {
sendto(rtpSocket, legacyPingData, sizeof(legacyPingData), 0, (struct sockaddr*)&saddr, AddrLen);
}
PltSleepMsInterruptible(&udpPingThread, 500);
}
}
// Receive thread proc
static void VideoReceiveThreadProc(void* context) {
int err;
int bufferSize, receiveSize, decryptedSize, minSize;
char* buffer;
char* encryptedBuffer;
int queueStatus;
bool useSelect;
int waitingForVideoMs;
bool encrypted;
encrypted = !!(EncryptionFeaturesEnabled & SS_ENC_VIDEO);
decryptedSize = StreamConfig.packetSize + MAX_RTP_HEADER_SIZE;
minSize = sizeof(RTP_PACKET) + ((EncryptionFeaturesEnabled & SS_ENC_VIDEO) ? sizeof(ENC_VIDEO_HEADER) : 0);
receiveSize = decryptedSize + ((EncryptionFeaturesEnabled & SS_ENC_VIDEO) ? sizeof(ENC_VIDEO_HEADER) : 0);
bufferSize = decryptedSize + sizeof(RTPV_QUEUE_ENTRY);
buffer = NULL;
if (setNonFatalRecvTimeoutMs(rtpSocket, UDP_RECV_POLL_TIMEOUT_MS) < 0) {
// SO_RCVTIMEO failed, so use select() to wait
useSelect = true;
}
else {
// SO_RCVTIMEO timeout set for recv()
useSelect = false;
}
// Allocate a staging buffer to use for each received packet
if (encrypted) {
encryptedBuffer = (char*)malloc(receiveSize);
if (encryptedBuffer == NULL) {
Limelog("Video Receive: malloc() failed\n");
ListenerCallbacks.connectionTerminated(-1);
return;
}
}
else {
encryptedBuffer = NULL;
}
waitingForVideoMs = 0;
while (!PltIsThreadInterrupted(&receiveThread)) {
PRTP_PACKET packet;
if (buffer == NULL) {
buffer = (char*)malloc(bufferSize);
if (buffer == NULL) {
Limelog("Video Receive: malloc() failed\n");
ListenerCallbacks.connectionTerminated(-1);
break;
}
}
err = recvUdpSocket(rtpSocket,
encrypted ? encryptedBuffer : buffer,
receiveSize,
useSelect);
if (err < 0) {
Limelog("Video Receive: recvUdpSocket() failed: %d\n", (int)LastSocketError());
ListenerCallbacks.connectionTerminated(LastSocketFail());
break;
}
else if (err == 0) {
if (!receivedDataFromPeer) {
// If we wait many seconds without ever receiving a video packet,
// assume something is broken and terminate the connection.
waitingForVideoMs += UDP_RECV_POLL_TIMEOUT_MS;
if (waitingForVideoMs >= FIRST_FRAME_TIMEOUT_SEC * 1000) {
Limelog("Terminating connection due to lack of video traffic\n");
ListenerCallbacks.connectionTerminated(ML_ERROR_NO_VIDEO_TRAFFIC);
break;
}
}
// Receive timed out; try again
continue;
}
if (!receivedDataFromPeer) {
receivedDataFromPeer = true;
Limelog("Received first video packet after %d ms\n", waitingForVideoMs);
firstDataTimeMs = PltGetMillis();
}
#ifndef LC_FUZZING
if (!receivedFullFrame) {
uint64_t now = PltGetMillis();
if (now - firstDataTimeMs >= FIRST_FRAME_TIMEOUT_SEC * 1000) {
Limelog("Terminating connection due to lack of a successful video frame\n");
ListenerCallbacks.connectionTerminated(ML_ERROR_NO_VIDEO_FRAME);
break;
}
}
#endif
if (err < minSize) {
// Runt packet
continue;
}
// Decrypt the packet into the buffer if encryption is enabled
if (encrypted) {
PENC_VIDEO_HEADER encHeader = (PENC_VIDEO_HEADER)encryptedBuffer;
// If this frame is below our current frame number, discard it before decryption
// to save CPU cycles decrypting FEC shards for a frame we already reassembled.
//
// Since this is happening _before_ decryption, this packet is not trusted yet.
// It's imperative that we do not mutate any state based on this packet until
// after it has been decrypted successfully!
//
// It's possible for an attacker to inject a fake packet that has any value of
// header fields they want, however this provides them no benefit because we will
// simply drop said packet here (if it's below the current frame number) or it
// will pass this check and be dropped during decryption (if contents is tampered)
// or after decryption in the RTP queue (if it's a replay of a previous authentic
// packet from the host).
//
// In short, an attacker spoofing this value via MITM or sending malicious values
// impersonating the host from off-link doesn't gain them anything. If they have
// a true MITM, they can DoS our connection by just dropping all our traffic, so
// tampering with packets to fail this check doesn't accomplish anything they
// couldn't already do. If they're not on-link, we just throw their malicious
// traffic away (as mentioned in the paragraph above) and continue accepting
// legitmate video traffic.
if (encHeader->frameNumber && LE32(encHeader->frameNumber) < RtpvGetCurrentFrameNumber(&rtpQueue)) {
continue;
}
if (!PltDecryptMessage(decryptionCtx, ALGORITHM_AES_GCM, 0,
(unsigned char*)StreamConfig.remoteInputAesKey, sizeof(StreamConfig.remoteInputAesKey),
encHeader->iv, sizeof(encHeader->iv),
encHeader->tag, sizeof(encHeader->tag),
((unsigned char*)(encHeader + 1)), err - sizeof(ENC_VIDEO_HEADER), // The ciphertext is after the header
(unsigned char*)buffer, &err)) {
Limelog("Failed to decrypt video packet!\n");
continue;
}
}
// Convert fields to host byte-order
packet = (PRTP_PACKET)&buffer[0];
packet->sequenceNumber = BE16(packet->sequenceNumber);
packet->timestamp = BE32(packet->timestamp);
packet->ssrc = BE32(packet->ssrc);
queueStatus = RtpvAddPacket(&rtpQueue, packet, err, (PRTPV_QUEUE_ENTRY)&buffer[decryptedSize]);
if (queueStatus == RTPF_RET_QUEUED) {
// The queue owns the buffer
buffer = NULL;
}
}
if (buffer != NULL) {
free(buffer);
}
if (encryptedBuffer != NULL) {
free(encryptedBuffer);
}
}
void notifyKeyFrameReceived(void) {
// Remember that we got a full frame successfully
receivedFullFrame = true;
}
// Decoder thread proc
static void VideoDecoderThreadProc(void* context) {
while (!PltIsThreadInterrupted(&decoderThread)) {
VIDEO_FRAME_HANDLE frameHandle;
PDECODE_UNIT decodeUnit;
if (!LiWaitForNextVideoFrame(&frameHandle, &decodeUnit)) {
return;
}
LiCompleteVideoFrame(frameHandle, VideoCallbacks.submitDecodeUnit(decodeUnit));
}
}
// Read the first frame of the video stream
int readFirstFrame(void) {
// All that matters is that we close this socket.
// This starts the flow of video on Gen 3 servers.
closeSocket(firstFrameSocket);
firstFrameSocket = INVALID_SOCKET;
return 0;
}
// Terminate the video stream
void stopVideoStream(void) {
if (!receivedDataFromPeer) {
Limelog("No video traffic was ever received from the host!\n");
}
VideoCallbacks.stop();
// Wake up client code that may be waiting on the decode unit queue
stopVideoDepacketizer();
PltInterruptThread(&udpPingThread);
PltInterruptThread(&receiveThread);
if ((VideoCallbacks.capabilities & (CAPABILITY_DIRECT_SUBMIT | CAPABILITY_PULL_RENDERER)) == 0) {
PltInterruptThread(&decoderThread);
}
if (firstFrameSocket != INVALID_SOCKET) {
shutdownTcpSocket(firstFrameSocket);
}
PltJoinThread(&udpPingThread);
PltJoinThread(&receiveThread);
if ((VideoCallbacks.capabilities & (CAPABILITY_DIRECT_SUBMIT | CAPABILITY_PULL_RENDERER)) == 0) {
PltJoinThread(&decoderThread);
}
if (firstFrameSocket != INVALID_SOCKET) {
closeSocket(firstFrameSocket);
firstFrameSocket = INVALID_SOCKET;
}
if (rtpSocket != INVALID_SOCKET) {
closeSocket(rtpSocket);
rtpSocket = INVALID_SOCKET;
}
VideoCallbacks.cleanup();
}
// Start the video stream
int startVideoStream(void* rendererContext, int drFlags) {
int err;
firstFrameSocket = INVALID_SOCKET;
// This must be called before the decoder thread starts submitting
// decode units
LC_ASSERT(NegotiatedVideoFormat != 0);
err = VideoCallbacks.setup(NegotiatedVideoFormat, StreamConfig.width,
StreamConfig.height, StreamConfig.fps, rendererContext, drFlags);
if (err != 0) {
return err;
}
rtpSocket = bindUdpSocket(RemoteAddr.ss_family, &LocalAddr, AddrLen,
RTP_RECV_PACKETS_BUFFERED * (StreamConfig.packetSize + MAX_RTP_HEADER_SIZE),
SOCK_QOS_TYPE_VIDEO);
if (rtpSocket == INVALID_SOCKET) {
VideoCallbacks.cleanup();
return LastSocketError();
}
VideoCallbacks.start();
err = PltCreateThread("VideoRecv", VideoReceiveThreadProc, NULL, &receiveThread);
if (err != 0) {
VideoCallbacks.stop();
closeSocket(rtpSocket);
VideoCallbacks.cleanup();
return err;
}
if ((VideoCallbacks.capabilities & (CAPABILITY_DIRECT_SUBMIT | CAPABILITY_PULL_RENDERER)) == 0) {
err = PltCreateThread("VideoDec", VideoDecoderThreadProc, NULL, &decoderThread);
if (err != 0) {
VideoCallbacks.stop();
PltInterruptThread(&receiveThread);
PltJoinThread(&receiveThread);
closeSocket(rtpSocket);
VideoCallbacks.cleanup();
return err;
}
}
if (AppVersionQuad[0] == 3) {
// Connect this socket to open port 47998 for our ping thread
firstFrameSocket = connectTcpSocket(&RemoteAddr, AddrLen,
FIRST_FRAME_PORT, FIRST_FRAME_TIMEOUT_SEC);
if (firstFrameSocket == INVALID_SOCKET) {
VideoCallbacks.stop();
stopVideoDepacketizer();
PltInterruptThread(&receiveThread);
if ((VideoCallbacks.capabilities & (CAPABILITY_DIRECT_SUBMIT | CAPABILITY_PULL_RENDERER)) == 0) {
PltInterruptThread(&decoderThread);
}
PltJoinThread(&receiveThread);
if ((VideoCallbacks.capabilities & (CAPABILITY_DIRECT_SUBMIT | CAPABILITY_PULL_RENDERER)) == 0) {
PltJoinThread(&decoderThread);
}
closeSocket(rtpSocket);
VideoCallbacks.cleanup();
return LastSocketError();
}
}
// Start pinging before reading the first frame so GFE knows where
// to send UDP data
err = PltCreateThread("VideoPing", VideoPingThreadProc, NULL, &udpPingThread);
if (err != 0) {
VideoCallbacks.stop();
stopVideoDepacketizer();
PltInterruptThread(&receiveThread);
if ((VideoCallbacks.capabilities & (CAPABILITY_DIRECT_SUBMIT | CAPABILITY_PULL_RENDERER)) == 0) {
PltInterruptThread(&decoderThread);
}
PltJoinThread(&receiveThread);
if ((VideoCallbacks.capabilities & (CAPABILITY_DIRECT_SUBMIT | CAPABILITY_PULL_RENDERER)) == 0) {
PltJoinThread(&decoderThread);
}
closeSocket(rtpSocket);
if (firstFrameSocket != INVALID_SOCKET) {
closeSocket(firstFrameSocket);
firstFrameSocket = INVALID_SOCKET;
}
VideoCallbacks.cleanup();
return err;
}
if (AppVersionQuad[0] == 3) {
// Read the first frame to start the flow of video
err = readFirstFrame();
if (err != 0) {
stopVideoStream();
return err;
}
}
return 0;
}