moonlight-common-c/src/ControlStream.c

1306 lines
43 KiB
C

#include "Limelight-internal.h"
#include "PlatformSockets.h"
#include "PlatformThreads.h"
#include "ByteBuffer.h"
#include <enet/enet.h>
#include <openssl/evp.h>
// NV control stream packet header for TCP
typedef struct _NVCTL_TCP_PACKET_HEADER {
unsigned short type;
unsigned short payloadLength;
} NVCTL_TCP_PACKET_HEADER, *PNVCTL_TCP_PACKET_HEADER;
typedef struct _NVCTL_ENET_PACKET_HEADER_V1 {
unsigned short type;
} NVCTL_ENET_PACKET_HEADER_V1, *PNVCTL_ENET_PACKET_HEADER_V1;
typedef struct _NVCTL_ENET_PACKET_HEADER_V2 {
unsigned short type;
unsigned short payloadLength;
} NVCTL_ENET_PACKET_HEADER_V2, *PNVCTL_ENET_PACKET_HEADER_V2;
#define AES_GCM_TAG_LENGTH 16
typedef struct _NVCTL_ENCRYPTED_PACKET_HEADER {
unsigned short encryptedHeaderType; // Always LE 0x0001
unsigned short length; // sizeof(seq) + 16 byte tag + secondary header and data
unsigned int seq; // Monotonically increasing sequence number (used as IV for AES-GCM)
// encrypted NVCTL_ENET_PACKET_HEADER_V2 and payload data follow
} NVCTL_ENCRYPTED_PACKET_HEADER, *PNVCTL_ENCRYPTED_PACKET_HEADER;
typedef struct _QUEUED_FRAME_INVALIDATION_TUPLE {
int startFrame;
int endFrame;
LINKED_BLOCKING_QUEUE_ENTRY entry;
} QUEUED_FRAME_INVALIDATION_TUPLE, *PQUEUED_FRAME_INVALIDATION_TUPLE;
static SOCKET ctlSock = INVALID_SOCKET;
static ENetHost* client;
static ENetPeer* peer;
static PLT_MUTEX enetMutex;
static bool usePeriodicPing;
static PLT_THREAD lossStatsThread;
static PLT_THREAD invalidateRefFramesThread;
static PLT_THREAD controlReceiveThread;
static PLT_EVENT invalidateRefFramesEvent;
static int lossCountSinceLastReport;
static int lastGoodFrame;
static int lastSeenFrame;
static bool stopping;
static bool disconnectPending;
static bool encryptedControlStream;
static int intervalGoodFrameCount;
static int intervalTotalFrameCount;
static uint64_t intervalStartTimeMs;
static int lastIntervalLossPercentage;
static int lastConnectionStatusUpdate;
static int currentEnetSequenceNumber;
static bool idrFrameRequired;
static LINKED_BLOCKING_QUEUE invalidReferenceFrameTuples;
static EVP_CIPHER_CTX* cipherContext;
#if OPENSSL_VERSION_NUMBER < 0x10100000L
#define EVP_CIPHER_CTX_reset(x) EVP_CIPHER_CTX_cleanup(x); EVP_CIPHER_CTX_init(x)
#endif
#define CONN_IMMEDIATE_POOR_LOSS_RATE 30
#define CONN_CONSECUTIVE_POOR_LOSS_RATE 15
#define CONN_OKAY_LOSS_RATE 5
#define CONN_STATUS_SAMPLE_PERIOD 3000
#define IDX_START_A 0
#define IDX_REQUEST_IDR_FRAME 0
#define IDX_START_B 1
#define IDX_INVALIDATE_REF_FRAMES 2
#define IDX_LOSS_STATS 3
#define IDX_INPUT_DATA 5
#define IDX_RUMBLE_DATA 6
#define IDX_TERMINATION 7
#define CONTROL_STREAM_TIMEOUT_SEC 10
static const short packetTypesGen3[] = {
0x1407, // Request IDR frame
0x1410, // Start B
0x1404, // Invalidate reference frames
0x140c, // Loss Stats
0x1417, // Frame Stats (unused)
-1, // Input data (unused)
-1, // Rumble data (unused)
-1, // Termination (unused)
};
static const short packetTypesGen4[] = {
0x0606, // Request IDR frame
0x0609, // Start B
0x0604, // Invalidate reference frames
0x060a, // Loss Stats
0x0611, // Frame Stats (unused)
-1, // Input data (unused)
-1, // Rumble data (unused)
-1, // Termination (unused)
};
static const short packetTypesGen5[] = {
0x0305, // Start A
0x0307, // Start B
0x0301, // Invalidate reference frames
0x0201, // Loss Stats
0x0204, // Frame Stats (unused)
0x0207, // Input data
-1, // Rumble data (unused)
-1, // Termination (unused)
};
static const short packetTypesGen7[] = {
0x0305, // Start A
0x0307, // Start B
0x0301, // Invalidate reference frames
0x0201, // Loss Stats
0x0204, // Frame Stats (unused)
0x0206, // Input data
0x010b, // Rumble data
0x0100, // Termination
};
static const short packetTypesGen7Enc[] = {
0x0305, // Start A
0x0307, // Start B
0x0301, // Invalidate reference frames
0x0201, // Loss Stats
0x0204, // Frame Stats (unused)
0x0206, // Input data
0x010b, // Rumble data
0x0109, // Termination (extended)
};
static const char requestIdrFrameGen3[] = { 0, 0 };
static const int startBGen3[] = { 0, 0, 0, 0xa };
static const char requestIdrFrameGen4[] = { 0, 0 };
static const char startBGen4[] = { 0 };
static const char startAGen5[] = { 0, 0 };
static const char startBGen5[] = { 0 };
static const short payloadLengthsGen3[] = {
sizeof(requestIdrFrameGen3), // Request IDR frame
sizeof(startBGen3), // Start B
24, // Invalidate reference frames
32, // Loss Stats
64, // Frame Stats
-1, // Input data
};
static const short payloadLengthsGen4[] = {
sizeof(requestIdrFrameGen4), // Request IDR frame
sizeof(startBGen4), // Start B
24, // Invalidate reference frames
32, // Loss Stats
64, // Frame Stats
-1, // Input data
};
static const short payloadLengthsGen5[] = {
sizeof(startAGen5), // Start A
sizeof(startBGen5), // Start B
24, // Invalidate reference frames
32, // Loss Stats
80, // Frame Stats
-1, // Input data
};
static const short payloadLengthsGen7[] = {
sizeof(startAGen5), // Start A
sizeof(startBGen5), // Start B
24, // Invalidate reference frames
32, // Loss Stats
80, // Frame Stats
-1, // Input data
};
static const char* preconstructedPayloadsGen3[] = {
requestIdrFrameGen3,
(char*)startBGen3
};
static const char* preconstructedPayloadsGen4[] = {
requestIdrFrameGen4,
startBGen4
};
static const char* preconstructedPayloadsGen5[] = {
startAGen5,
startBGen5
};
static const char* preconstructedPayloadsGen7[] = {
startAGen5,
startBGen5
};
static short* packetTypes;
static short* payloadLengths;
static char**preconstructedPayloads;
#define LOSS_REPORT_INTERVAL_MS 50
#define PERIODIC_PING_INTERVAL_MS 250
// Initializes the control stream
int initializeControlStream(void) {
stopping = false;
PltCreateEvent(&invalidateRefFramesEvent);
LbqInitializeLinkedBlockingQueue(&invalidReferenceFrameTuples, 20);
PltCreateMutex(&enetMutex);
encryptedControlStream = APP_VERSION_AT_LEAST(7, 1, 431);
if (AppVersionQuad[0] == 3) {
packetTypes = (short*)packetTypesGen3;
payloadLengths = (short*)payloadLengthsGen3;
preconstructedPayloads = (char**)preconstructedPayloadsGen3;
}
else if (AppVersionQuad[0] == 4) {
packetTypes = (short*)packetTypesGen4;
payloadLengths = (short*)payloadLengthsGen4;
preconstructedPayloads = (char**)preconstructedPayloadsGen4;
}
else if (AppVersionQuad[0] == 5) {
packetTypes = (short*)packetTypesGen5;
payloadLengths = (short*)payloadLengthsGen5;
preconstructedPayloads = (char**)preconstructedPayloadsGen5;
}
else {
if (encryptedControlStream) {
packetTypes = (short*)packetTypesGen7Enc;
}
else {
packetTypes = (short*)packetTypesGen7;
}
payloadLengths = (short*)payloadLengthsGen7;
preconstructedPayloads = (char**)preconstructedPayloadsGen7;
}
idrFrameRequired = false;
lastGoodFrame = 0;
lastSeenFrame = 0;
lossCountSinceLastReport = 0;
disconnectPending = false;
intervalGoodFrameCount = 0;
intervalTotalFrameCount = 0;
intervalStartTimeMs = 0;
lastIntervalLossPercentage = 0;
lastConnectionStatusUpdate = CONN_STATUS_OKAY;
currentEnetSequenceNumber = 0;
usePeriodicPing = APP_VERSION_AT_LEAST(7, 1, 415);
cipherContext = EVP_CIPHER_CTX_new();
return 0;
}
void freeFrameInvalidationList(PLINKED_BLOCKING_QUEUE_ENTRY entry) {
PLINKED_BLOCKING_QUEUE_ENTRY nextEntry;
while (entry != NULL) {
nextEntry = entry->flink;
free(entry->data);
entry = nextEntry;
}
}
// Cleans up control stream
void destroyControlStream(void) {
LC_ASSERT(stopping);
EVP_CIPHER_CTX_free(cipherContext);
PltCloseEvent(&invalidateRefFramesEvent);
freeFrameInvalidationList(LbqDestroyLinkedBlockingQueue(&invalidReferenceFrameTuples));
PltDeleteMutex(&enetMutex);
}
int getNextFrameInvalidationTuple(PQUEUED_FRAME_INVALIDATION_TUPLE* qfit) {
int err = LbqPollQueueElement(&invalidReferenceFrameTuples, (void**)qfit);
return (err == LBQ_SUCCESS);
}
void queueFrameInvalidationTuple(int startFrame, int endFrame) {
LC_ASSERT(startFrame <= endFrame);
if (isReferenceFrameInvalidationEnabled()) {
PQUEUED_FRAME_INVALIDATION_TUPLE qfit;
qfit = malloc(sizeof(*qfit));
if (qfit != NULL) {
qfit->startFrame = startFrame;
qfit->endFrame = endFrame;
if (LbqOfferQueueItem(&invalidReferenceFrameTuples, qfit, &qfit->entry) == LBQ_BOUND_EXCEEDED) {
// Too many invalidation tuples, so we need an IDR frame now
free(qfit);
idrFrameRequired = true;
}
}
else {
idrFrameRequired = true;
}
}
else {
idrFrameRequired = true;
}
PltSetEvent(&invalidateRefFramesEvent);
}
// Request an IDR frame on demand by the decoder
void requestIdrOnDemand(void) {
idrFrameRequired = true;
PltSetEvent(&invalidateRefFramesEvent);
}
// Invalidate reference frames lost by the network
void connectionDetectedFrameLoss(int startFrame, int endFrame) {
queueFrameInvalidationTuple(startFrame, endFrame);
}
// When we receive a frame, update the number of our current frame
void connectionReceivedCompleteFrame(int frameIndex) {
lastGoodFrame = frameIndex;
intervalGoodFrameCount++;
}
void connectionSawFrame(int frameIndex) {
LC_ASSERT(!isBefore16(frameIndex, lastSeenFrame));
uint64_t now = PltGetMillis();
if (now - intervalStartTimeMs >= CONN_STATUS_SAMPLE_PERIOD) {
if (intervalTotalFrameCount != 0) {
// Notify the client of connection status changes based on frame loss rate
int frameLossPercent = 100 - (intervalGoodFrameCount * 100) / intervalTotalFrameCount;
if (lastConnectionStatusUpdate != CONN_STATUS_POOR &&
(frameLossPercent >= CONN_IMMEDIATE_POOR_LOSS_RATE ||
(frameLossPercent >= CONN_CONSECUTIVE_POOR_LOSS_RATE && lastIntervalLossPercentage >= CONN_CONSECUTIVE_POOR_LOSS_RATE))) {
// We require 2 consecutive intervals above CONN_CONSECUTIVE_POOR_LOSS_RATE or a single
// interval above CONN_IMMEDIATE_POOR_LOSS_RATE to notify of a poor connection.
ListenerCallbacks.connectionStatusUpdate(CONN_STATUS_POOR);
lastConnectionStatusUpdate = CONN_STATUS_POOR;
}
else if (frameLossPercent <= CONN_OKAY_LOSS_RATE && lastConnectionStatusUpdate != CONN_STATUS_OKAY) {
ListenerCallbacks.connectionStatusUpdate(CONN_STATUS_OKAY);
lastConnectionStatusUpdate = CONN_STATUS_OKAY;
}
lastIntervalLossPercentage = frameLossPercent;
}
// Reset interval
intervalStartTimeMs = now;
intervalGoodFrameCount = intervalTotalFrameCount = 0;
}
intervalTotalFrameCount += frameIndex - lastSeenFrame;
lastSeenFrame = frameIndex;
}
// When we lose packets, update our packet loss count
void connectionLostPackets(int lastReceivedPacket, int nextReceivedPacket) {
lossCountSinceLastReport += (nextReceivedPacket - lastReceivedPacket) - 1;
}
// Reads an NV control stream packet from the TCP connection
static PNVCTL_TCP_PACKET_HEADER readNvctlPacketTcp(void) {
NVCTL_TCP_PACKET_HEADER staticHeader;
PNVCTL_TCP_PACKET_HEADER fullPacket;
SOCK_RET err;
err = recv(ctlSock, (char*)&staticHeader, sizeof(staticHeader), 0);
if (err != sizeof(staticHeader)) {
return NULL;
}
fullPacket = (PNVCTL_TCP_PACKET_HEADER)malloc(staticHeader.payloadLength + sizeof(staticHeader));
if (fullPacket == NULL) {
return NULL;
}
memcpy(fullPacket, &staticHeader, sizeof(staticHeader));
if (staticHeader.payloadLength != 0) {
err = recv(ctlSock, (char*)(fullPacket + 1), staticHeader.payloadLength, 0);
if (err != staticHeader.payloadLength) {
free(fullPacket);
return NULL;
}
}
return fullPacket;
}
static bool encryptControlMessage(PNVCTL_ENCRYPTED_PACKET_HEADER encPacket, PNVCTL_ENET_PACKET_HEADER_V2 packet) {
bool ret = false;
int len;
unsigned char iv[16];
// This is a truncating cast, but it's what Nvidia does, so we have to mimic it.
memset(iv, 0, sizeof(iv));
iv[0] = (unsigned char)encPacket->seq;
if (EVP_EncryptInit_ex(cipherContext, EVP_aes_128_gcm(), NULL, NULL, NULL) != 1) {
goto gcm_cleanup;
}
if (EVP_CIPHER_CTX_ctrl(cipherContext, EVP_CTRL_GCM_SET_IVLEN, 16, NULL) != 1) {
goto gcm_cleanup;
}
if (EVP_EncryptInit_ex(cipherContext, NULL, NULL,
(const unsigned char*)StreamConfig.remoteInputAesKey, iv) != 1) {
goto gcm_cleanup;
}
// Encrypt into the space after the encrypted header and GCM tag
int encryptedSize = sizeof(*packet) + packet->payloadLength;
if (EVP_EncryptUpdate(cipherContext, ((unsigned char*)(encPacket + 1)) + AES_GCM_TAG_LENGTH,
&encryptedSize, (const unsigned char*)packet, encryptedSize) != 1) {
goto gcm_cleanup;
}
// GCM encryption won't ever fill ciphertext here but we have to call it anyway
if (EVP_EncryptFinal_ex(cipherContext, ((unsigned char*)(encPacket + 1)), &len) != 1) {
goto gcm_cleanup;
}
LC_ASSERT(len == 0);
// Read the tag into the space after the encrypted header
if (EVP_CIPHER_CTX_ctrl(cipherContext, EVP_CTRL_GCM_GET_TAG, 16, (unsigned char*)(encPacket + 1)) != 1) {
ret = -1;
goto gcm_cleanup;
}
ret = true;
gcm_cleanup:
EVP_CIPHER_CTX_reset(cipherContext);
return ret;
}
// Caller must free() *packet on success!!!
static bool decryptControlMessageToV1(PNVCTL_ENCRYPTED_PACKET_HEADER encPacket, PNVCTL_ENET_PACKET_HEADER_V1* packet, int* packetLength) {
bool ret = false;
int len;
unsigned char iv[16];
*packet = NULL;
// It must be an encrypted packet to begin with
LC_ASSERT(encPacket->encryptedHeaderType == 0x0001);
// Check length first so we don't underflow
if (encPacket->length < sizeof(encPacket->seq) + AES_GCM_TAG_LENGTH + sizeof(NVCTL_ENET_PACKET_HEADER_V2)) {
Limelog("Received runt packet (%d). Unable to decrypt.\n", encPacket->length);
return false;
}
// This is a truncating cast, but it's what Nvidia does, so we have to mimic it.
memset(iv, 0, sizeof(iv));
iv[0] = (unsigned char)encPacket->seq;
if (EVP_DecryptInit_ex(cipherContext, EVP_aes_128_gcm(), NULL, NULL, NULL) != 1) {
goto gcm_cleanup;
}
if (EVP_CIPHER_CTX_ctrl(cipherContext, EVP_CTRL_GCM_SET_IVLEN, 16, NULL) != 1) {
goto gcm_cleanup;
}
if (EVP_DecryptInit_ex(cipherContext, NULL, NULL,
(const unsigned char*)StreamConfig.remoteInputAesKey, iv) != 1) {
goto gcm_cleanup;
}
int plaintextLength = encPacket->length - sizeof(encPacket->seq) - AES_GCM_TAG_LENGTH;
*packet = malloc(plaintextLength);
if (*packet == NULL) {
goto gcm_cleanup;
}
// Decrypt into the packet we allocated
if (EVP_DecryptUpdate(cipherContext, (unsigned char*)*packet, &plaintextLength,
((unsigned char*)(encPacket + 1)) + AES_GCM_TAG_LENGTH, plaintextLength) != 1) {
goto gcm_cleanup;
}
// Set the GCM tag before calling EVP_DecryptFinal_ex()
if (EVP_CIPHER_CTX_ctrl(cipherContext, EVP_CTRL_GCM_SET_TAG, 16, (unsigned char*)(encPacket + 1)) != 1) {
ret = -1;
goto gcm_cleanup;
}
// GCM encryption won't ever fill ciphertext here but we have to call it anyway
if (EVP_DecryptFinal_ex(cipherContext, (unsigned char*)*packet, &len) != 1) {
goto gcm_cleanup;
}
LC_ASSERT(len == 0);
// Now we do an in-place V2 to V1 header conversion, so our existing parsing code doesn't have to change.
// All we need to do is eliminate the new length field in V2 by shifting everything by 2 bytes.
memmove(((unsigned char*)*packet) + 2, ((unsigned char*)*packet) + 4, plaintextLength - 4);
*packetLength = plaintextLength - 2;
ret = true;
gcm_cleanup:
EVP_CIPHER_CTX_reset(cipherContext);
if (!ret && *packet) {
free(*packet);
*packet = NULL;
}
return ret;
}
static bool sendMessageEnet(short ptype, short paylen, const void* payload) {
ENetPacket* enetPacket;
int err;
LC_ASSERT(AppVersionQuad[0] >= 5);
if (encryptedControlStream) {
PNVCTL_ENCRYPTED_PACKET_HEADER encPacket;
PNVCTL_ENET_PACKET_HEADER_V2 packet;
char tempBuffer[256];
enetPacket = enet_packet_create(NULL,
sizeof(*encPacket) + AES_GCM_TAG_LENGTH + sizeof(*packet) + paylen,
ENET_PACKET_FLAG_RELIABLE);
if (enetPacket == NULL) {
return false;
}
// We (ab)use the enetMutex to protect currentEnetSequenceNumber and the cipherContext
// used inside encryptControlMessage().
PltLockMutex(&enetMutex);
encPacket = (PNVCTL_ENCRYPTED_PACKET_HEADER)enetPacket->data;
encPacket->encryptedHeaderType = 0x0001;
encPacket->length = sizeof(encPacket->seq) + AES_GCM_TAG_LENGTH + sizeof(*packet) + paylen;
encPacket->seq = currentEnetSequenceNumber++;
// Construct the plaintext data for encryption
LC_ASSERT(sizeof(*packet) + paylen < sizeof(tempBuffer));
packet = (PNVCTL_ENET_PACKET_HEADER_V2)tempBuffer;
packet->type = ptype;
packet->payloadLength = paylen;
memcpy(&packet[1], payload, paylen);
// Encrypt the data into the final packet
if (!encryptControlMessage(encPacket, packet)) {
Limelog("Failed to encrypt control stream message\n");
enet_packet_destroy(enetPacket);
PltUnlockMutex(&enetMutex);
return false;
}
PltUnlockMutex(&enetMutex);
}
else {
PNVCTL_ENET_PACKET_HEADER_V1 packet;
enetPacket = enet_packet_create(NULL, sizeof(*packet) + paylen, ENET_PACKET_FLAG_RELIABLE);
if (enetPacket == NULL) {
return false;
}
packet = (PNVCTL_ENET_PACKET_HEADER_V1)enetPacket->data;
packet->type = ptype;
memcpy(&packet[1], payload, paylen);
}
PltLockMutex(&enetMutex);
err = enet_peer_send(peer, 0, enetPacket);
PltUnlockMutex(&enetMutex);
if (err < 0) {
Limelog("Failed to send ENet control packet\n");
enet_packet_destroy(enetPacket);
return false;
}
PltLockMutex(&enetMutex);
enet_host_flush(client);
PltUnlockMutex(&enetMutex);
return true;
}
static bool sendMessageTcp(short ptype, short paylen, const void* payload) {
PNVCTL_TCP_PACKET_HEADER packet;
SOCK_RET err;
LC_ASSERT(AppVersionQuad[0] < 5);
packet = malloc(sizeof(*packet) + paylen);
if (packet == NULL) {
return false;
}
packet->type = ptype;
packet->payloadLength = paylen;
memcpy(&packet[1], payload, paylen);
err = send(ctlSock, (char*) packet, sizeof(*packet) + paylen, 0);
free(packet);
if (err != (SOCK_RET)(sizeof(*packet) + paylen)) {
return false;
}
return true;
}
static bool sendMessageAndForget(short ptype, short paylen, const void* payload) {
bool ret;
// Unlike regular sockets, ENet sockets aren't safe to invoke from multiple
// threads at once. We have to synchronize them with a lock.
if (AppVersionQuad[0] >= 5) {
ret = sendMessageEnet(ptype, paylen, payload);
}
else {
ret = sendMessageTcp(ptype, paylen, payload);
}
return ret;
}
static bool sendMessageAndDiscardReply(short ptype, short paylen, const void* payload) {
if (AppVersionQuad[0] >= 5) {
if (!sendMessageEnet(ptype, paylen, payload)) {
return false;
}
}
else {
PNVCTL_TCP_PACKET_HEADER reply;
if (!sendMessageTcp(ptype, paylen, payload)) {
return false;
}
// Discard the response
reply = readNvctlPacketTcp();
if (reply == NULL) {
return false;
}
free(reply);
}
return true;
}
// This intercept function drops disconnect events to allow us to process
// pending receives first. It works around what appears to be a bug in ENet
// where pending disconnects can cause loss of unprocessed received data.
static int ignoreDisconnectIntercept(ENetHost* host, ENetEvent* event) {
if (host->receivedDataLength == sizeof(ENetProtocolHeader) + sizeof(ENetProtocolDisconnect)) {
ENetProtocolHeader* protoHeader = (ENetProtocolHeader*)host->receivedData;
ENetProtocolDisconnect* disconnect = (ENetProtocolDisconnect*)(protoHeader + 1);
if ((disconnect->header.command & ENET_PROTOCOL_COMMAND_MASK) == ENET_PROTOCOL_COMMAND_DISCONNECT) {
Limelog("ENet disconnect event pending\n");
disconnectPending = true;
if (event) {
event->type = ENET_EVENT_TYPE_NONE;
}
return 1;
}
}
return 0;
}
static void controlReceiveThreadFunc(void* context) {
int err;
// This is only used for ENet
if (AppVersionQuad[0] < 5) {
return;
}
while (!PltIsThreadInterrupted(&controlReceiveThread)) {
ENetEvent event;
// Poll for new packets and process retransmissions
PltLockMutex(&enetMutex);
err = serviceEnetHost(client, &event, 0);
PltUnlockMutex(&enetMutex);
if (err == 0) {
// Handle a pending disconnect after unsuccessfully polling
// for new events to handle.
if (disconnectPending) {
PltLockMutex(&enetMutex);
// Wait 100 ms for pending receives after a disconnect and
// 1 second for the pending disconnect to be processed after
// removing the intercept callback.
err = serviceEnetHost(client, &event, client->intercept ? 100 : 1000);
if (err == 0) {
if (client->intercept) {
// Now that no pending receive events remain, we can
// remove our intercept hook and allow the server's
// disconnect to be processed as expected. We will wait
// 1 second for this disconnect to be processed before
// we tear down the connection anyway.
client->intercept = NULL;
PltUnlockMutex(&enetMutex);
continue;
}
else {
// The 1 second timeout has expired with no disconnect event
// retransmission after the first notification. We can only
// assume the server died tragically, so go ahead and tear down.
PltUnlockMutex(&enetMutex);
Limelog("Disconnect event timeout expired\n");
ListenerCallbacks.connectionTerminated(-1);
return;
}
}
else {
PltUnlockMutex(&enetMutex);
}
}
else {
// No events ready - sleep for a short time
//
// NOTE: This sleep *directly* impacts the lowest possible retransmission
// time for packets after a loss event. If we're busy sleeping here, we can't
// retransmit a dropped packet, so we keep the sleep time to a minimum.
PltSleepMsInterruptible(&controlReceiveThread, 10);
continue;
}
}
if (err < 0) {
Limelog("Control stream connection failed: %d\n", err);
ListenerCallbacks.connectionTerminated(err);
return;
}
if (event.type == ENET_EVENT_TYPE_RECEIVE) {
PNVCTL_ENET_PACKET_HEADER_V1 ctlHdr;
int packetLength;
if (event.packet->dataLength < sizeof(*ctlHdr)) {
Limelog("Discarding runt control packet: %d < %d\n", event.packet->dataLength, (int)sizeof(*ctlHdr));
enet_packet_destroy(event.packet);
continue;
}
ctlHdr = (PNVCTL_ENET_PACKET_HEADER_V1)event.packet->data;
if (encryptedControlStream) {
// V2 headers can be interpreted as V1 headers for the purpose of examining type,
// so this check is safe.
if (ctlHdr->type == 0x0001) {
if (event.packet->dataLength < sizeof(NVCTL_ENCRYPTED_PACKET_HEADER)) {
Limelog("Discarding runt encrypted control packet: %d < %d\n", event.packet->dataLength, (int)sizeof(NVCTL_ENCRYPTED_PACKET_HEADER));
enet_packet_destroy(event.packet);
continue;
}
// We (ab)use this lock to protect the cryptoContext too
PltLockMutex(&enetMutex);
ctlHdr = NULL;
if (!decryptControlMessageToV1((PNVCTL_ENCRYPTED_PACKET_HEADER)event.packet->data, &ctlHdr, &packetLength)) {
PltUnlockMutex(&enetMutex);
Limelog("Failed to decrypt control packet of size %d\n", event.packet->dataLength);
enet_packet_destroy(event.packet);
continue;
}
PltUnlockMutex(&enetMutex);
}
else {
// What do we do here???
LC_ASSERT(false);
packetLength = event.packet->dataLength;
}
}
else {
// Take ownership of the packet data directly for the non-encrypted case
ctlHdr = (PNVCTL_ENET_PACKET_HEADER_V1)event.packet->data;
packetLength = event.packet->dataLength;
event.packet->data = NULL;
}
// We're done with the packet struct
enet_packet_destroy(event.packet);
// All below codepaths must free ctlHdr!!!
if (ctlHdr->type == packetTypes[IDX_RUMBLE_DATA]) {
BYTE_BUFFER bb;
BbInitializeWrappedBuffer(&bb, (char*)ctlHdr, sizeof(*ctlHdr), packetLength - sizeof(*ctlHdr), BYTE_ORDER_LITTLE);
BbAdvanceBuffer(&bb, 4);
uint16_t controllerNumber;
uint16_t lowFreqRumble;
uint16_t highFreqRumble;
BbGet16(&bb, &controllerNumber);
BbGet16(&bb, &lowFreqRumble);
BbGet16(&bb, &highFreqRumble);
ListenerCallbacks.rumble(controllerNumber, lowFreqRumble, highFreqRumble);
}
else if (ctlHdr->type == packetTypes[IDX_TERMINATION]) {
BYTE_BUFFER bb;
uint32_t terminationErrorCode;
if (packetLength >= 6) {
// This is the extended termination message which contains a full HRESULT
BbInitializeWrappedBuffer(&bb, (char*)ctlHdr, sizeof(*ctlHdr), packetLength - sizeof(*ctlHdr), BYTE_ORDER_BIG);
BbGet32(&bb, &terminationErrorCode);
Limelog("Server notified termination reason: 0x%08x\n", terminationErrorCode);
// NVST_DISCONN_SERVER_TERMINATED_CLOSED is the expected graceful termination error
if (terminationErrorCode == 0x80030023) {
if (lastSeenFrame != 0) {
// Pass error code 0 to notify the client that this was not an error
terminationErrorCode = ML_ERROR_GRACEFUL_TERMINATION;
}
else {
// We never saw a frame, so this is probably an error that caused
// NvStreamer to terminate prior to sending any frames.
terminationErrorCode = ML_ERROR_UNEXPECTED_EARLY_TERMINATION;
}
}
// NVST_DISCONN_SERVER_VFP_PROTECTED_CONTENT means it failed due to protected content on screen
else if (terminationErrorCode == 0x800e9302) {
terminationErrorCode = ML_ERROR_PROTECTED_CONTENT;
}
}
else {
uint16_t terminationReason;
// This is the short termination message
BbInitializeWrappedBuffer(&bb, (char*)ctlHdr, sizeof(*ctlHdr), packetLength - sizeof(*ctlHdr), BYTE_ORDER_LITTLE);
BbGet16(&bb, &terminationReason);
Limelog("Server notified termination reason: 0x%04x\n", terminationReason);
// SERVER_TERMINATED_INTENDED
if (terminationReason == 0x0100) {
if (lastSeenFrame != 0) {
// Pass error code 0 to notify the client that this was not an error
terminationErrorCode = ML_ERROR_GRACEFUL_TERMINATION;
}
else {
// We never saw a frame, so this is probably an error that caused
// NvStreamer to terminate prior to sending any frames.
terminationErrorCode = ML_ERROR_UNEXPECTED_EARLY_TERMINATION;
}
}
else {
// Otherwise pass the reason unmodified
terminationErrorCode = terminationReason;
}
}
// We used to wait for a ENET_EVENT_TYPE_DISCONNECT event, but since
// GFE 3.20.3.63 we don't get one for 10 seconds after we first get
// this termination message. The termination message should be reliable
// enough to end the stream now, rather than waiting for an explicit
// disconnect.
ListenerCallbacks.connectionTerminated((int)terminationErrorCode);
free(ctlHdr);
return;
}
free(ctlHdr);
}
else if (event.type == ENET_EVENT_TYPE_DISCONNECT) {
Limelog("Control stream received unexpected disconnect event\n");
ListenerCallbacks.connectionTerminated(-1);
return;
}
}
}
static void lossStatsThreadFunc(void* context) {
BYTE_BUFFER byteBuffer;
if (usePeriodicPing) {
char periodicPingPayload[8];
BbInitializeWrappedBuffer(&byteBuffer, periodicPingPayload, 0, sizeof(periodicPingPayload), BYTE_ORDER_LITTLE);
BbPut16(&byteBuffer, 4); // Length of payload
BbPut32(&byteBuffer, 0); // Timestamp?
while (!PltIsThreadInterrupted(&lossStatsThread)) {
// Send the message (and don't expect a response)
if (!sendMessageAndForget(0x0200, sizeof(periodicPingPayload), periodicPingPayload)) {
Limelog("Loss Stats: Transaction failed: %d\n", (int)LastSocketError());
ListenerCallbacks.connectionTerminated(LastSocketFail());
return;
}
// Wait a bit
PltSleepMsInterruptible(&lossStatsThread, PERIODIC_PING_INTERVAL_MS);
}
}
else {
char* lossStatsPayload;
lossStatsPayload = malloc(payloadLengths[IDX_LOSS_STATS]);
if (lossStatsPayload == NULL) {
Limelog("Loss Stats: malloc() failed\n");
ListenerCallbacks.connectionTerminated(-1);
return;
}
while (!PltIsThreadInterrupted(&lossStatsThread)) {
// Construct the payload
BbInitializeWrappedBuffer(&byteBuffer, lossStatsPayload, 0, payloadLengths[IDX_LOSS_STATS], BYTE_ORDER_LITTLE);
BbPut32(&byteBuffer, lossCountSinceLastReport);
BbPut32(&byteBuffer, LOSS_REPORT_INTERVAL_MS);
BbPut32(&byteBuffer, 1000);
BbPut64(&byteBuffer, lastGoodFrame);
BbPut32(&byteBuffer, 0);
BbPut32(&byteBuffer, 0);
BbPut32(&byteBuffer, 0x14);
// Send the message (and don't expect a response)
if (!sendMessageAndForget(packetTypes[IDX_LOSS_STATS],
payloadLengths[IDX_LOSS_STATS], lossStatsPayload)) {
free(lossStatsPayload);
Limelog("Loss Stats: Transaction failed: %d\n", (int)LastSocketError());
ListenerCallbacks.connectionTerminated(LastSocketFail());
return;
}
// Clear the transient state
lossCountSinceLastReport = 0;
// Wait a bit
PltSleepMsInterruptible(&lossStatsThread, LOSS_REPORT_INTERVAL_MS);
}
free(lossStatsPayload);
}
}
static void requestIdrFrame(void) {
int64_t payload[3];
if (AppVersionQuad[0] >= 5) {
// Form the payload
if (lastSeenFrame < 0x20) {
payload[0] = 0;
payload[1] = lastSeenFrame;
}
else {
payload[0] = lastSeenFrame - 0x20;
payload[1] = lastSeenFrame;
}
payload[2] = 0;
// Send the reference frame invalidation request and read the response
if (!sendMessageAndDiscardReply(packetTypes[IDX_INVALIDATE_REF_FRAMES],
payloadLengths[IDX_INVALIDATE_REF_FRAMES], payload)) {
Limelog("Request IDR Frame: Transaction failed: %d\n", (int)LastSocketError());
ListenerCallbacks.connectionTerminated(LastSocketFail());
return;
}
}
else {
// Send IDR frame request and read the response
if (!sendMessageAndDiscardReply(packetTypes[IDX_REQUEST_IDR_FRAME],
payloadLengths[IDX_REQUEST_IDR_FRAME], preconstructedPayloads[IDX_REQUEST_IDR_FRAME])) {
Limelog("Request IDR Frame: Transaction failed: %d\n", (int)LastSocketError());
ListenerCallbacks.connectionTerminated(LastSocketFail());
return;
}
}
Limelog("IDR frame request sent\n");
}
static void requestInvalidateReferenceFrames(void) {
int64_t payload[3];
PQUEUED_FRAME_INVALIDATION_TUPLE qfit;
LC_ASSERT(isReferenceFrameInvalidationEnabled());
if (!getNextFrameInvalidationTuple(&qfit)) {
return;
}
LC_ASSERT(qfit->startFrame <= qfit->endFrame);
payload[0] = qfit->startFrame;
payload[1] = qfit->endFrame;
payload[2] = 0;
// Aggregate all lost frames into one range
do {
LC_ASSERT(qfit->endFrame >= payload[1]);
payload[1] = qfit->endFrame;
free(qfit);
} while (getNextFrameInvalidationTuple(&qfit));
// Send the reference frame invalidation request and read the response
if (!sendMessageAndDiscardReply(packetTypes[IDX_INVALIDATE_REF_FRAMES],
payloadLengths[IDX_INVALIDATE_REF_FRAMES], payload)) {
Limelog("Request Invaldiate Reference Frames: Transaction failed: %d\n", (int)LastSocketError());
ListenerCallbacks.connectionTerminated(LastSocketFail());
return;
}
Limelog("Invalidate reference frame request sent (%d to %d)\n", (int)payload[0], (int)payload[1]);
}
static void invalidateRefFramesFunc(void* context) {
while (!PltIsThreadInterrupted(&invalidateRefFramesThread)) {
// Wait for a request to invalidate reference frames
PltWaitForEvent(&invalidateRefFramesEvent);
PltClearEvent(&invalidateRefFramesEvent);
// Bail if we've been shutdown
if (stopping) {
break;
}
// Sometimes we absolutely need an IDR frame
if (idrFrameRequired) {
// Empty invalidate reference frames tuples
PQUEUED_FRAME_INVALIDATION_TUPLE qfit;
while (getNextFrameInvalidationTuple(&qfit)) {
free(qfit);
}
// Send an IDR frame request
idrFrameRequired = false;
requestIdrFrame();
}
else {
// Otherwise invalidate reference frames
requestInvalidateReferenceFrames();
}
}
}
// Stops the control stream
int stopControlStream(void) {
stopping = true;
LbqSignalQueueShutdown(&invalidReferenceFrameTuples);
PltSetEvent(&invalidateRefFramesEvent);
// This must be set to stop in a timely manner
LC_ASSERT(ConnectionInterrupted);
if (ctlSock != INVALID_SOCKET) {
shutdownTcpSocket(ctlSock);
}
PltInterruptThread(&lossStatsThread);
PltInterruptThread(&invalidateRefFramesThread);
PltInterruptThread(&controlReceiveThread);
PltJoinThread(&lossStatsThread);
PltJoinThread(&invalidateRefFramesThread);
PltJoinThread(&controlReceiveThread);
PltCloseThread(&lossStatsThread);
PltCloseThread(&invalidateRefFramesThread);
PltCloseThread(&controlReceiveThread);
if (peer != NULL) {
// We use enet_peer_disconnect_now() so the host knows immediately
// of our termination and can cleanup properly for reconnection.
enet_peer_disconnect_now(peer, 0);
peer = NULL;
}
if (client != NULL) {
enet_host_destroy(client);
client = NULL;
}
if (ctlSock != INVALID_SOCKET) {
closeSocket(ctlSock);
ctlSock = INVALID_SOCKET;
}
return 0;
}
// Called by the input stream to send a packet for Gen 5+ servers
int sendInputPacketOnControlStream(unsigned char* data, int length) {
LC_ASSERT(AppVersionQuad[0] >= 5);
// Send the input data (no reply expected)
if (sendMessageAndForget(packetTypes[IDX_INPUT_DATA], length, data) == 0) {
return -1;
}
return 0;
}
// Starts the control stream
int startControlStream(void) {
int err;
if (AppVersionQuad[0] >= 5) {
ENetAddress address;
ENetEvent event;
enet_address_set_address(&address, (struct sockaddr *)&RemoteAddr, RemoteAddrLen);
enet_address_set_port(&address, 47999);
// Create a client that can use 1 outgoing connection and 1 channel
client = enet_host_create(address.address.ss_family, NULL, 1, 1, 0, 0);
if (client == NULL) {
stopping = true;
return -1;
}
client->intercept = ignoreDisconnectIntercept;
// Connect to the host
peer = enet_host_connect(client, &address, 1, 0);
if (peer == NULL) {
stopping = true;
enet_host_destroy(client);
client = NULL;
return -1;
}
// Wait for the connect to complete
if (serviceEnetHost(client, &event, CONTROL_STREAM_TIMEOUT_SEC * 1000) <= 0 ||
event.type != ENET_EVENT_TYPE_CONNECT) {
Limelog("Failed to connect to UDP port 47999\n");
stopping = true;
enet_peer_reset(peer);
peer = NULL;
enet_host_destroy(client);
client = NULL;
return ETIMEDOUT;
}
// Ensure the connect verify ACK is sent immediately
enet_host_flush(client);
// Set the max peer timeout to 10 seconds
enet_peer_timeout(peer, ENET_PEER_TIMEOUT_LIMIT, ENET_PEER_TIMEOUT_MINIMUM, 10000);
}
else {
ctlSock = connectTcpSocket(&RemoteAddr, RemoteAddrLen,
47995, CONTROL_STREAM_TIMEOUT_SEC);
if (ctlSock == INVALID_SOCKET) {
stopping = true;
return LastSocketFail();
}
enableNoDelay(ctlSock);
}
err = PltCreateThread("ControlRecv", controlReceiveThreadFunc, NULL, &controlReceiveThread);
if (err != 0) {
stopping = true;
if (ctlSock != INVALID_SOCKET) {
closeSocket(ctlSock);
ctlSock = INVALID_SOCKET;
}
else {
enet_peer_disconnect_now(peer, 0);
peer = NULL;
enet_host_destroy(client);
client = NULL;
}
return err;
}
// Send START A
if (!sendMessageAndDiscardReply(packetTypes[IDX_START_A],
payloadLengths[IDX_START_A],
preconstructedPayloads[IDX_START_A])) {
Limelog("Start A failed: %d\n", (int)LastSocketError());
err = LastSocketFail();
stopping = true;
if (ctlSock != INVALID_SOCKET) {
shutdownTcpSocket(ctlSock);
}
else {
ConnectionInterrupted = true;
}
PltInterruptThread(&controlReceiveThread);
PltJoinThread(&controlReceiveThread);
PltCloseThread(&controlReceiveThread);
if (ctlSock != INVALID_SOCKET) {
closeSocket(ctlSock);
ctlSock = INVALID_SOCKET;
}
else {
enet_peer_disconnect_now(peer, 0);
peer = NULL;
enet_host_destroy(client);
client = NULL;
}
return err;
}
// Send START B
if (!sendMessageAndDiscardReply(packetTypes[IDX_START_B],
payloadLengths[IDX_START_B],
preconstructedPayloads[IDX_START_B])) {
Limelog("Start B failed: %d\n", (int)LastSocketError());
err = LastSocketFail();
stopping = true;
if (ctlSock != INVALID_SOCKET) {
shutdownTcpSocket(ctlSock);
}
else {
ConnectionInterrupted = true;
}
PltInterruptThread(&controlReceiveThread);
PltJoinThread(&controlReceiveThread);
PltCloseThread(&controlReceiveThread);
if (ctlSock != INVALID_SOCKET) {
closeSocket(ctlSock);
ctlSock = INVALID_SOCKET;
}
else {
enet_peer_disconnect_now(peer, 0);
peer = NULL;
enet_host_destroy(client);
client = NULL;
}
return err;
}
err = PltCreateThread("LossStats", lossStatsThreadFunc, NULL, &lossStatsThread);
if (err != 0) {
stopping = true;
if (ctlSock != INVALID_SOCKET) {
shutdownTcpSocket(ctlSock);
}
else {
ConnectionInterrupted = true;
}
PltInterruptThread(&controlReceiveThread);
PltJoinThread(&controlReceiveThread);
PltCloseThread(&controlReceiveThread);
if (ctlSock != INVALID_SOCKET) {
closeSocket(ctlSock);
ctlSock = INVALID_SOCKET;
}
else {
enet_peer_disconnect_now(peer, 0);
peer = NULL;
enet_host_destroy(client);
client = NULL;
}
return err;
}
err = PltCreateThread("InvRefFrames", invalidateRefFramesFunc, NULL, &invalidateRefFramesThread);
if (err != 0) {
stopping = true;
if (ctlSock != INVALID_SOCKET) {
shutdownTcpSocket(ctlSock);
}
else {
ConnectionInterrupted = true;
}
PltInterruptThread(&lossStatsThread);
PltJoinThread(&lossStatsThread);
PltCloseThread(&lossStatsThread);
PltInterruptThread(&controlReceiveThread);
PltJoinThread(&controlReceiveThread);
PltCloseThread(&controlReceiveThread);
if (ctlSock != INVALID_SOCKET) {
closeSocket(ctlSock);
ctlSock = INVALID_SOCKET;
}
else {
enet_peer_disconnect_now(peer, 0);
peer = NULL;
enet_host_destroy(client);
client = NULL;
}
return err;
}
return 0;
}