mirror of
https://github.com/moonlight-stream/moonlight-common-c.git
synced 2025-07-01 07:15:39 +00:00
640 lines
18 KiB
C
640 lines
18 KiB
C
/*
|
|
* fec.c -- forward error correction based on Vandermonde matrices
|
|
*
|
|
* (C) 1997-98 Luigi Rizzo (luigi@iet.unipi.it)
|
|
* (C) 2001 Alain Knaff (alain@knaff.lu)
|
|
* (C) 2017 Iwan Timmer (irtimmer@gmail.com)
|
|
*
|
|
* Portions derived from code by Phil Karn (karn@ka9q.ampr.org),
|
|
* Robert Morelos-Zaragoza (robert@spectra.eng.hawaii.edu) and Hari
|
|
* Thirumoorthy (harit@spectra.eng.hawaii.edu), Aug 1995
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above
|
|
* copyright notice, this list of conditions and the following
|
|
* disclaimer in the documentation and/or other materials
|
|
* provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
|
|
* THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
|
|
* PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS
|
|
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
|
|
* OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
|
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
|
|
* OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
|
|
* TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
|
|
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
|
|
* OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
|
|
#include <assert.h>
|
|
#include "rs.h"
|
|
|
|
#ifdef _MSC_VER
|
|
#define NEED_ALLOCA
|
|
#define alloca(x) _alloca(x)
|
|
#endif
|
|
|
|
typedef unsigned char gf;
|
|
|
|
#define GF_BITS 8
|
|
#define GF_PP "101110001"
|
|
#define GF_SIZE ((1 << GF_BITS) - 1)
|
|
|
|
#define SWAP(a,b,t) {t tmp; tmp=a; a=b; b=tmp;}
|
|
|
|
/*
|
|
* USE_GF_MULC, GF_MULC0(c) and GF_ADDMULC(x) can be used when multiplying
|
|
* many numbers by the same constant. In this case the first
|
|
* call sets the constant, and others perform the multiplications.
|
|
* A value related to the multiplication is held in a local variable
|
|
* declared with USE_GF_MULC . See usage in addmul1().
|
|
*/
|
|
#define USE_GF_MULC register gf * __gf_mulc_
|
|
#define GF_MULC0(c) __gf_mulc_ = &gf_mul_table[(c)<<8]
|
|
#define GF_ADDMULC(dst, x) dst ^= __gf_mulc_[x]
|
|
#define GF_MULC(dst, x) dst = __gf_mulc_[x]
|
|
|
|
#define gf_mul(x,y) gf_mul_table[(x<<8)+y]
|
|
|
|
/*
|
|
* To speed up computations, we have tables for logarithm, exponent
|
|
* multiplication and inverse of a number.
|
|
*/
|
|
static gf gf_exp[2*GF_SIZE];
|
|
static int gf_log[GF_SIZE + 1];
|
|
static gf inverse[GF_SIZE+1];
|
|
#ifdef _MSC_VER
|
|
static gf __declspec(align (256)) gf_mul_table[(GF_SIZE + 1)*(GF_SIZE + 1)];
|
|
#else
|
|
static gf gf_mul_table[(GF_SIZE + 1)*(GF_SIZE + 1)] __attribute__((aligned (256)));
|
|
#endif
|
|
|
|
/*
|
|
* modnn(x) computes x % GF_SIZE, where GF_SIZE is 2**GF_BITS - 1,
|
|
* without a slow divide.
|
|
*/
|
|
static inline gf modnn(int x) {
|
|
while (x >= GF_SIZE) {
|
|
x -= GF_SIZE;
|
|
x = (x >> GF_BITS) + (x & GF_SIZE);
|
|
}
|
|
return x;
|
|
}
|
|
|
|
static void addmul(gf *dst1, gf *src1, gf c, int sz) {
|
|
USE_GF_MULC;
|
|
if (c != 0) {
|
|
register gf *dst = dst1, *src = src1;
|
|
gf *lim = &dst[sz];
|
|
|
|
GF_MULC0(c);
|
|
for (; dst < lim; dst++, src++)
|
|
GF_ADDMULC(*dst, *src);
|
|
}
|
|
}
|
|
|
|
static void mul(gf *dst1, gf *src1, gf c, int sz) {
|
|
USE_GF_MULC;
|
|
if (c != 0) {
|
|
register gf *dst = dst1, *src = src1;
|
|
gf *lim = &dst[sz];
|
|
GF_MULC0(c);
|
|
for (; dst < lim; dst++, src++)
|
|
GF_MULC(*dst , *src);
|
|
} else
|
|
memset(dst1, 0, c);
|
|
}
|
|
|
|
/* y = a.dot(b) */
|
|
static gf* multiply1(gf *a, int ar, int ac, gf *b, int br, int bc) {
|
|
gf *new_m, tg;
|
|
int r, c, i, ptr = 0;
|
|
|
|
assert(ac == br);
|
|
new_m = (gf*) calloc(1, ar*bc);
|
|
if (NULL != new_m) {
|
|
|
|
/* this multiply is slow */
|
|
for (r = 0; r < ar; r++) {
|
|
for (c = 0; c < bc; c++) {
|
|
tg = 0;
|
|
for (i = 0; i < ac; i++)
|
|
tg ^= gf_mul(a[r*ac+i], b[i*bc+c]);
|
|
|
|
new_m[ptr++] = tg;
|
|
}
|
|
}
|
|
}
|
|
|
|
return new_m;
|
|
}
|
|
|
|
static void init_mul_table(void) {
|
|
int i, j;
|
|
for (i=0; i< GF_SIZE+1; i++)
|
|
for (j=0; j< GF_SIZE+1; j++)
|
|
gf_mul_table[(i<<8)+j] = gf_exp[modnn(gf_log[i] + gf_log[j]) ] ;
|
|
|
|
for (j=0; j< GF_SIZE+1; j++)
|
|
gf_mul_table[j] = gf_mul_table[j<<8] = 0;
|
|
}
|
|
|
|
/*
|
|
* initialize the data structures used for computations in GF.
|
|
*/
|
|
static void generate_gf(void) {
|
|
int i;
|
|
gf mask;
|
|
|
|
mask = 1;
|
|
gf_exp[GF_BITS] = 0;
|
|
/*
|
|
* first, generate the (polynomial representation of) powers of \alpha,
|
|
* which are stored in gf_exp[i] = \alpha ** i .
|
|
* At the same time build gf_log[gf_exp[i]] = i .
|
|
* The first GF_BITS powers are simply bits shifted to the left.
|
|
*/
|
|
for (i = 0; i < GF_BITS; i++, mask <<= 1) {
|
|
gf_exp[i] = mask;
|
|
gf_log[gf_exp[i]] = i;
|
|
/*
|
|
* If GF_PP[i] == 1 then \alpha ** i occurs in poly-repr
|
|
* gf_exp[GF_BITS] = \alpha ** GF_BITS
|
|
*/
|
|
if (GF_PP[i] == '1')
|
|
gf_exp[GF_BITS] ^= mask;
|
|
}
|
|
/*
|
|
* now gf_exp[GF_BITS] = \alpha ** GF_BITS is complete, so can als
|
|
* compute its inverse.
|
|
*/
|
|
gf_log[gf_exp[GF_BITS]] = GF_BITS;
|
|
/*
|
|
* Poly-repr of \alpha ** (i+1) is given by poly-repr of
|
|
* \alpha ** i shifted left one-bit and accounting for any
|
|
* \alpha ** GF_BITS term that may occur when poly-repr of
|
|
* \alpha ** i is shifted.
|
|
*/
|
|
mask = 1 << (GF_BITS - 1) ;
|
|
for (i = GF_BITS + 1; i < GF_SIZE; i++) {
|
|
if (gf_exp[i - 1] >= mask)
|
|
gf_exp[i] = gf_exp[GF_BITS] ^ ((gf_exp[i - 1] ^ mask) << 1);
|
|
else
|
|
gf_exp[i] = gf_exp[i - 1] << 1;
|
|
|
|
gf_log[gf_exp[i]] = i;
|
|
}
|
|
/*
|
|
* log(0) is not defined, so use a special value
|
|
*/
|
|
gf_log[0] = GF_SIZE;
|
|
/* set the extended gf_exp values for fast multiply */
|
|
for (i = 0; i < GF_SIZE; i++)
|
|
gf_exp[i + GF_SIZE] = gf_exp[i];
|
|
|
|
/*
|
|
* again special cases. 0 has no inverse. This used to
|
|
* be initialized to GF_SIZE, but it should make no difference
|
|
* since noone is supposed to read from here.
|
|
*/
|
|
inverse[0] = 0;
|
|
inverse[1] = 1;
|
|
for (i=2; i<=GF_SIZE; i++)
|
|
inverse[i] = gf_exp[GF_SIZE-gf_log[i]];
|
|
}
|
|
|
|
/*
|
|
* invert_mat() takes a matrix and produces its inverse
|
|
* k is the size of the matrix.
|
|
* (Gauss-Jordan, adapted from Numerical Recipes in C)
|
|
* Return non-zero if singular.
|
|
*/
|
|
static int invert_mat(gf *src, int k) {
|
|
gf c, *p;
|
|
int irow, icol, row, col, i, ix;
|
|
|
|
int error = 1;
|
|
#ifdef NEED_ALLOCA
|
|
int *indxc = alloca(k*sizeof(int));
|
|
int *indxr = alloca(k*sizeof(int));
|
|
int *ipiv = alloca(k*sizeof(int));
|
|
gf *id_row = alloca(k*sizeof(gf));
|
|
#else
|
|
int indxc[k];
|
|
int indxr[k];
|
|
int ipiv[k];
|
|
gf id_row[k];
|
|
#endif
|
|
|
|
memset(id_row, 0, k*sizeof(gf));
|
|
/*
|
|
* ipiv marks elements already used as pivots.
|
|
*/
|
|
for (i = 0; i < k; i++)
|
|
ipiv[i] = 0;
|
|
|
|
for (col = 0; col < k; col++) {
|
|
gf *pivot_row;
|
|
/*
|
|
* Zeroing column 'col', look for a non-zero element.
|
|
* First try on the diagonal, if it fails, look elsewhere.
|
|
*/
|
|
irow = icol = -1;
|
|
if (ipiv[col] != 1 && src[col*k + col] != 0) {
|
|
irow = col;
|
|
icol = col;
|
|
goto found_piv;
|
|
}
|
|
for (row = 0; row < k; row++) {
|
|
if (ipiv[row] != 1) {
|
|
for (ix = 0; ix < k; ix++) {
|
|
if (ipiv[ix] == 0) {
|
|
if (src[row*k + ix] != 0) {
|
|
irow = row;
|
|
icol = ix;
|
|
goto found_piv;
|
|
}
|
|
} else if (ipiv[ix] > 1) {
|
|
fprintf(stderr, "singular matrix\n");
|
|
goto fail;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
if (icol == -1) {
|
|
fprintf(stderr, "XXX pivot not found!\n");
|
|
goto fail ;
|
|
}
|
|
|
|
found_piv:
|
|
++(ipiv[icol]);
|
|
/*
|
|
* swap rows irow and icol, so afterwards the diagonal
|
|
* element will be correct. Rarely done, not worth
|
|
* optimizing.
|
|
*/
|
|
if (irow != icol) {
|
|
for (ix = 0; ix < k; ix++) {
|
|
SWAP(src[irow*k + ix], src[icol*k + ix], gf);
|
|
}
|
|
}
|
|
indxr[col] = irow;
|
|
indxc[col] = icol;
|
|
pivot_row = &src[icol*k];
|
|
c = pivot_row[icol];
|
|
if (c == 0) {
|
|
fprintf(stderr, "singular matrix 2\n");
|
|
goto fail;
|
|
} else if (c != 1 ) {
|
|
/*
|
|
* this is done often , but optimizing is not so
|
|
* fruitful, at least in the obvious ways (unrolling)
|
|
*/
|
|
c = inverse[ c ];
|
|
pivot_row[icol] = 1;
|
|
for (ix = 0; ix < k; ix++)
|
|
pivot_row[ix] = gf_mul(c, pivot_row[ix]);
|
|
}
|
|
/*
|
|
* from all rows, remove multiples of the selected row
|
|
* to zero the relevant entry (in fact, the entry is not zero
|
|
* because we know it must be zero).
|
|
* (Here, if we know that the pivot_row is the identity,
|
|
* we can optimize the addmul).
|
|
*/
|
|
id_row[icol] = 1;
|
|
if (memcmp(pivot_row, id_row, k*sizeof(gf)) != 0) {
|
|
for (p = src, ix = 0 ; ix < k ; ix++, p += k) {
|
|
if (ix != icol) {
|
|
c = p[icol];
|
|
p[icol] = 0;
|
|
addmul(p, pivot_row, c, k);
|
|
}
|
|
}
|
|
}
|
|
id_row[icol] = 0;
|
|
}
|
|
for (col = k-1 ; col >= 0 ; col-- ) {
|
|
if (indxr[col] <0 || indxr[col] >= k)
|
|
fprintf(stderr, "AARGH, indxr[col] %d\n", indxr[col]);
|
|
else if (indxc[col] <0 || indxc[col] >= k)
|
|
fprintf(stderr, "AARGH, indxc[col] %d\n", indxc[col]);
|
|
else
|
|
if (indxr[col] != indxc[col] ) {
|
|
for (row = 0 ; row < k ; row++ )
|
|
SWAP( src[row*k + indxr[col]], src[row*k + indxc[col]], gf);
|
|
}
|
|
}
|
|
error = 0;
|
|
|
|
fail:
|
|
return error ;
|
|
}
|
|
|
|
/*
|
|
* Not check for input params
|
|
* */
|
|
static gf* sub_matrix(gf* matrix, int rmin, int cmin, int rmax, int cmax, int nrows, int ncols) {
|
|
int i, j, ptr = 0;
|
|
gf* new_m = (gf*) malloc((rmax-rmin) * (cmax-cmin));
|
|
if (NULL != new_m) {
|
|
for (i = rmin; i < rmax; i++) {
|
|
for (j = cmin; j < cmax; j++) {
|
|
new_m[ptr++] = matrix[i*ncols + j];
|
|
}
|
|
}
|
|
}
|
|
|
|
return new_m;
|
|
}
|
|
|
|
/* copy from golang rs version */
|
|
static inline int code_some_shards(gf* matrixRows, gf** inputs, gf** outputs, int dataShards, int outputCount, int byteCount) {
|
|
gf* in;
|
|
int iRow, c;
|
|
for (c = 0; c < dataShards; c++) {
|
|
in = inputs[c];
|
|
for (iRow = 0; iRow < outputCount; iRow++) {
|
|
if (0 == c)
|
|
mul(outputs[iRow], in, matrixRows[iRow*dataShards+c], byteCount);
|
|
else
|
|
addmul(outputs[iRow], in, matrixRows[iRow*dataShards+c], byteCount);
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
void reed_solomon_init(void) {
|
|
generate_gf();
|
|
init_mul_table();
|
|
}
|
|
|
|
reed_solomon* reed_solomon_new(int data_shards, int parity_shards) {
|
|
gf* vm = NULL;
|
|
gf* top = NULL;
|
|
int err = 0;
|
|
reed_solomon* rs = NULL;
|
|
|
|
do {
|
|
rs = malloc(sizeof(reed_solomon));
|
|
if (NULL == rs)
|
|
return NULL;
|
|
|
|
rs->data_shards = data_shards;
|
|
rs->parity_shards = parity_shards;
|
|
rs->shards = (data_shards + parity_shards);
|
|
rs->m = NULL;
|
|
rs->parity = NULL;
|
|
|
|
if (rs->shards > DATA_SHARDS_MAX || data_shards <= 0 || parity_shards <= 0) {
|
|
err = 1;
|
|
break;
|
|
}
|
|
|
|
vm = (gf*)malloc(data_shards * rs->shards);
|
|
|
|
if (NULL == vm) {
|
|
err = 2;
|
|
break;
|
|
}
|
|
|
|
int ptr = 0;
|
|
for (int row = 0; row < rs->shards; row++) {
|
|
for (int col = 0; col < data_shards; col++)
|
|
vm[ptr++] = row == col ? 1 : 0;
|
|
}
|
|
|
|
top = sub_matrix(vm, 0, 0, data_shards, data_shards, rs->shards, data_shards);
|
|
if (NULL == top) {
|
|
err = 3;
|
|
break;
|
|
}
|
|
|
|
err = invert_mat(top, data_shards);
|
|
assert(0 == err);
|
|
|
|
rs->m = multiply1(vm, rs->shards, data_shards, top, data_shards, data_shards);
|
|
if (NULL == rs->m) {
|
|
err = 4;
|
|
break;
|
|
}
|
|
|
|
for (int j = 0; j < parity_shards; j++) {
|
|
for (int i = 0; i < data_shards; i++)
|
|
rs->m[(data_shards + j)*data_shards + i] = inverse[(parity_shards + i) ^ j];
|
|
}
|
|
|
|
rs->parity = sub_matrix(rs->m, data_shards, 0, rs->shards, data_shards, rs->shards, data_shards);
|
|
if (NULL == rs->parity) {
|
|
err = 5;
|
|
break;
|
|
}
|
|
|
|
free(vm);
|
|
free(top);
|
|
vm = NULL;
|
|
top = NULL;
|
|
return rs;
|
|
|
|
} while(0);
|
|
|
|
fprintf(stderr, "err=%d\n", err);
|
|
if (NULL != vm)
|
|
free(vm);
|
|
|
|
if (NULL != top)
|
|
free(top);
|
|
|
|
if (NULL != rs) {
|
|
if (NULL != rs->m)
|
|
free(rs->m);
|
|
|
|
if (NULL != rs->parity)
|
|
free(rs->parity);
|
|
|
|
free(rs);
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
void reed_solomon_release(reed_solomon* rs) {
|
|
if (NULL != rs) {
|
|
if (NULL != rs->m)
|
|
free(rs->m);
|
|
|
|
if (NULL != rs->parity)
|
|
free(rs->parity);
|
|
|
|
free(rs);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* decode one shard
|
|
* input:
|
|
* rs
|
|
* original data_blocks[rs->data_shards][block_size]
|
|
* dec_fec_blocks[nr_fec_blocks][block_size]
|
|
* fec_block_nos: fec pos number in original fec_blocks
|
|
* erased_blocks: erased blocks in original data_blocks
|
|
* nr_fec_blocks: the number of erased blocks
|
|
* */
|
|
static int reed_solomon_decode(reed_solomon* rs, unsigned char **data_blocks, int block_size, unsigned char **dec_fec_blocks, unsigned int *fec_block_nos, unsigned int *erased_blocks, int nr_fec_blocks) {
|
|
/* use stack instead of malloc, define a small number of DATA_SHARDS_MAX to save memory */
|
|
gf dataDecodeMatrix[DATA_SHARDS_MAX*DATA_SHARDS_MAX];
|
|
unsigned char* subShards[DATA_SHARDS_MAX];
|
|
unsigned char* outputs[DATA_SHARDS_MAX];
|
|
gf* m = rs->m;
|
|
int i, j, c, swap, subMatrixRow, dataShards;
|
|
|
|
/* the erased_blocks should always sorted
|
|
* if sorted, nr_fec_blocks times to check it
|
|
* if not, sort it here
|
|
* */
|
|
for (i = 0; i < nr_fec_blocks; i++) {
|
|
swap = 0;
|
|
for (j = i+1; j < nr_fec_blocks; j++) {
|
|
if (erased_blocks[i] > erased_blocks[j]) {
|
|
/* the prefix is bigger than the following, swap */
|
|
c = erased_blocks[i];
|
|
erased_blocks[i] = erased_blocks[j];
|
|
erased_blocks[j] = c;
|
|
|
|
swap = 1;
|
|
}
|
|
}
|
|
if (!swap)
|
|
break;
|
|
}
|
|
|
|
j = 0;
|
|
subMatrixRow = 0;
|
|
dataShards = rs->data_shards;
|
|
for (i = 0; i < dataShards; i++) {
|
|
if (j < nr_fec_blocks && i == (int)erased_blocks[j])
|
|
j++;
|
|
else {
|
|
/* this row is ok */
|
|
for (c = 0; c < dataShards; c++)
|
|
dataDecodeMatrix[subMatrixRow*dataShards + c] = m[i*dataShards + c];
|
|
|
|
subShards[subMatrixRow] = data_blocks[i];
|
|
subMatrixRow++;
|
|
}
|
|
}
|
|
|
|
for (i = 0; i < nr_fec_blocks && subMatrixRow < dataShards; i++) {
|
|
subShards[subMatrixRow] = dec_fec_blocks[i];
|
|
j = dataShards + fec_block_nos[i];
|
|
for (c = 0; c < dataShards; c++)
|
|
dataDecodeMatrix[subMatrixRow*dataShards + c] = m[j*dataShards + c];
|
|
|
|
subMatrixRow++;
|
|
}
|
|
|
|
if (subMatrixRow < dataShards)
|
|
return -1;
|
|
|
|
invert_mat(dataDecodeMatrix, dataShards);
|
|
|
|
for (i = 0; i < nr_fec_blocks; i++) {
|
|
j = erased_blocks[i];
|
|
outputs[i] = data_blocks[j];
|
|
memmove(dataDecodeMatrix+i*dataShards, dataDecodeMatrix+j*dataShards, dataShards);
|
|
}
|
|
|
|
return code_some_shards(dataDecodeMatrix, subShards, outputs, dataShards, nr_fec_blocks, block_size);
|
|
}
|
|
|
|
/**
|
|
* encode a big size of buffer
|
|
* input:
|
|
* rs
|
|
* nr_shards: assert(0 == nr_shards % rs->shards)
|
|
* shards[nr_shards][block_size]
|
|
* */
|
|
int reed_solomon_encode(reed_solomon* rs, unsigned char** shards, int nr_shards, int block_size) {
|
|
unsigned char** data_blocks;
|
|
unsigned char** fec_blocks;
|
|
int i, ds = rs->data_shards, ps = rs->parity_shards, ss = rs->shards;
|
|
i = nr_shards / ss;
|
|
data_blocks = shards;
|
|
fec_blocks = &shards[(i*ds)];
|
|
|
|
for (i = 0; i < nr_shards; i += ss) {
|
|
code_some_shards(rs->parity, data_blocks, fec_blocks, rs->data_shards, rs->parity_shards, block_size);
|
|
data_blocks += ds;
|
|
fec_blocks += ps;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* reconstruct a big size of buffer
|
|
* input:
|
|
* rs
|
|
* nr_shards: assert(0 == nr_shards % rs->data_shards)
|
|
* shards[nr_shards][block_size]
|
|
* marks[nr_shards] marks as errors
|
|
* */
|
|
int reed_solomon_reconstruct(reed_solomon* rs, unsigned char** shards, unsigned char* marks, int nr_shards, int block_size) {
|
|
unsigned char *dec_fec_blocks[DATA_SHARDS_MAX];
|
|
unsigned int fec_block_nos[DATA_SHARDS_MAX];
|
|
unsigned int erased_blocks[DATA_SHARDS_MAX];
|
|
unsigned char* fec_marks;
|
|
unsigned char **data_blocks, **fec_blocks;
|
|
int i, j, dn, pn, n;
|
|
int ds = rs->data_shards;
|
|
int ps = rs->parity_shards;
|
|
int err = 0;
|
|
|
|
data_blocks = shards;
|
|
n = nr_shards / rs->shards;
|
|
fec_marks = marks + n*ds; //after all data, is't fec marks
|
|
fec_blocks = shards + n*ds;
|
|
|
|
for (j = 0; j < n; j++) {
|
|
dn = 0;
|
|
for (i = 0; i < ds; i++) {
|
|
if (marks[i])
|
|
erased_blocks[dn++] = i;
|
|
}
|
|
if (dn > 0) {
|
|
pn = 0;
|
|
for (i = 0; i < ps && pn < dn; i++) {
|
|
if (!fec_marks[i]) {
|
|
//got valid fec row
|
|
fec_block_nos[pn] = i;
|
|
dec_fec_blocks[pn] = fec_blocks[i];
|
|
pn++;
|
|
}
|
|
}
|
|
|
|
if (dn == pn) {
|
|
reed_solomon_decode(rs, data_blocks, block_size, dec_fec_blocks, fec_block_nos, erased_blocks, dn);
|
|
} else
|
|
err = -1;
|
|
}
|
|
data_blocks += ds;
|
|
marks += ds;
|
|
fec_blocks += ps;
|
|
fec_marks += ps;
|
|
}
|
|
|
|
return err;
|
|
}
|