Implement audio FEC recovery support

This commit is contained in:
Cameron Gutman 2021-06-01 18:31:56 -05:00
parent 122ce4a568
commit 89918324ce
6 changed files with 486 additions and 322 deletions

View File

@ -3,7 +3,7 @@
static SOCKET rtpSocket = INVALID_SOCKET;
static LINKED_BLOCKING_QUEUE packetQueue;
static RTP_REORDER_QUEUE rtpReorderQueue;
static RTP_AUDIO_QUEUE rtpAudioQueue;
static PLT_THREAD udpPingThread;
static PLT_THREAD receiveThread;
@ -26,15 +26,14 @@ static uint64_t firstReceiveTime;
// for longer than normal.
#define RTP_RECV_BUFFER (64 * 1024)
typedef struct _QUEUED_AUDIO_PACKET {
// data must remain at the front
char data[MAX_PACKET_SIZE];
typedef struct _QUEUE_AUDIO_PACKET_HEADER {
LINKED_BLOCKING_QUEUE_ENTRY lentry;
int size;
union {
RTP_QUEUE_ENTRY rentry;
LINKED_BLOCKING_QUEUE_ENTRY lentry;
} q;
} QUEUED_AUDIO_PACKET_HEADER, *PQUEUED_AUDIO_PACKET_HEADER;
typedef struct _QUEUED_AUDIO_PACKET {
QUEUED_AUDIO_PACKET_HEADER header;
char data[MAX_PACKET_SIZE];
} QUEUED_AUDIO_PACKET, *PQUEUED_AUDIO_PACKET;
static void UdpPingThreadProc(void* context) {
@ -67,7 +66,7 @@ static void UdpPingThreadProc(void* context) {
// Initialize the audio stream and start
int initializeAudioStream(void) {
LbqInitializeLinkedBlockingQueue(&packetQueue, 30);
RtpqInitializeQueue(&rtpReorderQueue, RTPQ_DEFAULT_MAX_SIZE, RTPQ_DEFAULT_QUEUE_TIME);
RtpaInitializeQueue(&rtpAudioQueue);
lastSeq = 0;
receivedDataFromPeer = false;
firstReceiveTime = 0;
@ -122,13 +121,13 @@ void destroyAudioStream(void) {
PltDestroyCryptoContext(audioDecryptionCtx);
freePacketList(LbqDestroyLinkedBlockingQueue(&packetQueue));
RtpqCleanupQueue(&rtpReorderQueue);
RtpaCleanupQueue(&rtpAudioQueue);
}
static bool queuePacketToLbq(PQUEUED_AUDIO_PACKET* packet) {
int err;
err = LbqOfferQueueItem(&packetQueue, *packet, &(*packet)->q.lentry);
err = LbqOfferQueueItem(&packetQueue, *packet, &(*packet)->header.lentry);
if (err == LBQ_SUCCESS) {
// The LBQ owns the buffer now
*packet = NULL;
@ -160,7 +159,7 @@ static void decodeInputData(PQUEUED_AUDIO_PACKET packet) {
// We must have room for the AES padding which may be written to the buffer
unsigned char decryptedOpusData[ROUND_TO_PKCS7_PADDED_LEN(MAX_PACKET_SIZE)];
unsigned char iv[16] = { 0 };
int dataLength = packet->size - sizeof(*rtp);
int dataLength = packet->header.size - sizeof(*rtp);
LC_ASSERT(dataLength <= MAX_PACKET_SIZE);
@ -182,7 +181,7 @@ static void decodeInputData(PQUEUED_AUDIO_PACKET packet) {
AudioCallbacks.decodeAndPlaySample((char*)decryptedOpusData, dataLength);
}
else {
AudioCallbacks.decodeAndPlaySample((char*)(rtp + 1), packet->size - sizeof(*rtp));
AudioCallbacks.decodeAndPlaySample((char*)(rtp + 1), packet->header.size - sizeof(*rtp));
}
}
@ -217,13 +216,13 @@ static void ReceiveThreadProc(void* context) {
}
}
packet->size = recvUdpSocket(rtpSocket, &packet->data[0], MAX_PACKET_SIZE, useSelect);
if (packet->size < 0) {
packet->header.size = recvUdpSocket(rtpSocket, &packet->data[0], MAX_PACKET_SIZE, useSelect);
if (packet->header.size < 0) {
Limelog("Audio Receive: recvUdpSocket() failed: %d\n", (int)LastSocketError());
ListenerCallbacks.connectionTerminated(LastSocketFail());
break;
}
else if (packet->size == 0) {
else if (packet->header.size == 0) {
// Receive timed out; try again
if (!receivedDataFromPeer) {
@ -236,16 +235,12 @@ static void ReceiveThreadProc(void* context) {
continue;
}
if (packet->size < (int)sizeof(RTP_PACKET)) {
if (packet->header.size < (int)sizeof(RTP_PACKET)) {
// Runt packet
continue;
}
rtp = (PRTP_PACKET)&packet->data[0];
if (rtp->packetType != 97) {
// Not audio
continue;
}
if (!receivedDataFromPeer) {
receivedDataFromPeer = true;
@ -260,7 +255,10 @@ static void ReceiveThreadProc(void* context) {
// GFE accumulates audio samples before we are ready to receive them, so
// we will drop the ones that arrived before the receive thread was ready.
if (packetsToDrop > 0) {
packetsToDrop--;
// Only count actual audio data (not FEC) in the packets to drop calculation
if (rtp->packetType == 97) {
packetsToDrop--;
}
continue;
}
@ -269,7 +267,7 @@ static void ReceiveThreadProc(void* context) {
rtp->timestamp = BE32(rtp->timestamp);
rtp->ssrc = BE32(rtp->ssrc);
queueStatus = RtpqAddPacket(&rtpReorderQueue, (PRTP_PACKET)packet, &packet->q.rentry);
queueStatus = RtpaAddPacket(&rtpAudioQueue, (PRTP_PACKET)&packet->data[0], (uint16_t)packet->header.size);
if (RTPQ_HANDLE_NOW(queueStatus)) {
if ((AudioCallbacks.capabilities & CAPABILITY_DIRECT_SUBMIT) == 0) {
if (!queuePacketToLbq(&packet)) {
@ -289,7 +287,11 @@ static void ReceiveThreadProc(void* context) {
if (RTPQ_PACKET_READY(queueStatus)) {
// If packets are ready, pull them and send them to the decoder
while ((packet = (PQUEUED_AUDIO_PACKET)RtpqGetQueuedPacket(&rtpReorderQueue)) != NULL) {
uint16_t length;
while ((packet = (PQUEUED_AUDIO_PACKET)RtpaGetQueuedPacket(&rtpAudioQueue, sizeof(QUEUED_AUDIO_PACKET_HEADER), &length)) != NULL) {
// Populate header data (not preserved in queued packets)
packet->header.size = length;
if ((AudioCallbacks.capabilities & CAPABILITY_DIRECT_SUBMIT) == 0) {
if (!queuePacketToLbq(&packet)) {
// An exit signal was received

View File

@ -8,7 +8,7 @@
#include "Video.h"
#include "Input.h"
#include "RtpFecQueue.h"
#include "RtpReorderQueue.h"
#include "RtpAudioQueue.h"
#include "ByteBuffer.h"
#include <enet/enet.h>

391
src/RtpAudioQueue.c Normal file
View File

@ -0,0 +1,391 @@
#include "Limelight-internal.h"
void RtpaInitializeQueue(PRTP_AUDIO_QUEUE queue) {
memset(queue, 0, sizeof(*queue));
queue->maxQueueTimeMs = RTPQ_DEFAULT_QUEUE_TIME;
queue->nextRtpSequenceNumber = UINT16_MAX;
reed_solomon_init();
// The number of data and parity shards is constant, so we can reuse
// the same RS matrices for all traffic.
queue->rs = reed_solomon_new(RTPA_DATA_SHARDS, RTPA_FEC_SHARDS);
// For unknown reasons, the RS parity matrix computed by our RS implementation
// doesn't match the one Nvidia uses for audio data. I'm not exactly sure why,
// but we can simply replace it with the matrix generated by OpenFEC which
// works correctly. This is possible because the data and FEC shard count is
// constant and known in advance.
const unsigned char parity[] = { 0x77, 0x40, 0x38, 0x0e, 0xc7, 0xa7, 0x0d, 0x6c };
memcpy(&queue->rs->m[16], parity, sizeof(parity));
memcpy(queue->rs->parity, parity, sizeof(parity));
}
static void freeFecBlockHead(PRTP_AUDIO_QUEUE queue) {
PRTPA_FEC_BLOCK blockHead = queue->blockHead;
queue->blockHead = queue->blockHead->next;
if (queue->blockHead != NULL) {
queue->blockHead->prev = NULL;
}
else {
LC_ASSERT(queue->blockTail == blockHead);
queue->blockTail = NULL;
}
queue->oldestRtpBaseSequenceNumber = blockHead->fecHeader.baseSequenceNumber + RTPA_DATA_SHARDS;
free(blockHead);
}
void RtpaCleanupQueue(PRTP_AUDIO_QUEUE queue) {
while (queue->blockHead != NULL) {
freeFecBlockHead(queue);
}
LC_ASSERT(queue->blockTail == NULL);
reed_solomon_release(queue->rs);
queue->rs = NULL;
}
static PRTPA_FEC_BLOCK getFecBlockForRtpPacket(PRTP_AUDIO_QUEUE queue, PRTP_PACKET packet, uint16_t length) {
uint32_t fecBlockSsrc;
uint16_t fecBlockBaseSeqNum;
uint32_t fecBlockBaseTs;
uint16_t blockSize;
uint8_t fecBlockPayloadType;
if (packet->packetType == 97) {
if (length < sizeof(RTP_PACKET)) {
Limelog("RTP audio data packet too small: %u\n", length);
LC_ASSERT(false);
return NULL;
}
// This is a data packet, so we will need to synthesize an FEC header
fecBlockPayloadType = packet->packetType;
fecBlockBaseSeqNum = (packet->sequenceNumber / RTPA_DATA_SHARDS) * RTPA_DATA_SHARDS;
fecBlockBaseTs = packet->timestamp - ((packet->sequenceNumber - fecBlockBaseSeqNum) * AudioPacketDuration);
fecBlockSsrc = packet->ssrc;
blockSize = length - sizeof(RTP_PACKET);
}
else if (packet->packetType == 127) {
PAUDIO_FEC_HEADER fecHeader = (PAUDIO_FEC_HEADER)(packet + 1);
if (length < sizeof(RTP_PACKET) + sizeof(AUDIO_FEC_HEADER)) {
Limelog("RTP audio FEC packet too small: %u\n", length);
LC_ASSERT(false);
return NULL;
}
// This is an FEC packet, so we can just copy (and byteswap) the FEC header
fecBlockPayloadType = fecHeader->payloadType;
fecBlockBaseSeqNum = BE16(fecHeader->baseSequenceNumber);
fecBlockBaseTs = BE32(fecHeader->baseTimestamp);
fecBlockSsrc = BE32(fecHeader->ssrc);
// Ensure the FEC shard index is valid to prevent OOB access
// later during recovery.
if (fecHeader->fecShardIndex >= RTPA_FEC_SHARDS) {
Limelog("Too many audio FEC shards: %u\n", fecHeader->fecShardIndex);
LC_ASSERT(false);
return NULL;
}
blockSize = length - sizeof(RTP_PACKET) - sizeof(AUDIO_FEC_HEADER);
}
else {
LC_ASSERT(false);
return NULL;
}
// Drop packets from FEC blocks that have already been completed
if (isBefore16(fecBlockBaseSeqNum, queue->oldestRtpBaseSequenceNumber)) {
return NULL;
}
// Look for an existing FEC block
PRTPA_FEC_BLOCK existingBlock = queue->blockHead;
while (existingBlock != NULL) {
if (existingBlock->fecHeader.baseSequenceNumber == fecBlockBaseSeqNum) {
// The FEC header data should match for all packets
LC_ASSERT(existingBlock->fecHeader.payloadType == fecBlockPayloadType);
LC_ASSERT(existingBlock->fecHeader.baseTimestamp == fecBlockBaseTs);
LC_ASSERT(existingBlock->fecHeader.ssrc == fecBlockSsrc);
LC_ASSERT(existingBlock->blockSize == blockSize);
// If the block is completed, don't return it
return existingBlock->fullyReassembled ? NULL : existingBlock;
}
else if (existingBlock->fecHeader.baseSequenceNumber > fecBlockBaseSeqNum) {
// The new block goes right before this one
break;
}
existingBlock = existingBlock->next;
}
// We didn't find an existing FEC block, so we'll have to make one
uint16_t dataPacketSize = blockSize + sizeof(RTP_PACKET);
PRTPA_FEC_BLOCK block = malloc(sizeof(*block) + (RTPA_DATA_SHARDS * dataPacketSize) + (RTPA_FEC_SHARDS * blockSize));
if (block == NULL) {
return NULL;
}
memset(block, 0, sizeof(*block));
block->queueTimeMs = PltGetMillis();
block->blockSize = blockSize;
memset(block->marks, 1, sizeof(block->marks));
// Set up the FEC header
block->fecHeader.payloadType = fecBlockPayloadType;
block->fecHeader.baseSequenceNumber = fecBlockBaseSeqNum;
block->fecHeader.baseTimestamp = fecBlockBaseTs;
block->fecHeader.ssrc = fecBlockSsrc;
// Set up packet buffers pointing into the slab we allocated
uint8_t* data = (uint8_t*)(block + 1);
for (int i = 0; i < RTPA_DATA_SHARDS; i++) {
block->dataPackets[i] = (PRTP_PACKET)data;
data += dataPacketSize;
}
for (int i = 0; i < RTPA_FEC_SHARDS; i++) {
block->fecPackets[i] = data;
data += blockSize;
}
// Place this block into the list in order
if (existingBlock != NULL) {
// This new block comes right before existingBlock
PRTPA_FEC_BLOCK prevBlock = existingBlock->prev;
existingBlock->prev = block;
if (prevBlock == NULL) {
LC_ASSERT(queue->blockHead == existingBlock);
queue->blockHead = block;
}
else {
prevBlock->next = block;
}
block->prev = prevBlock;
block->next = existingBlock;
}
else {
// This block goes at the tail of the list
block->prev = queue->blockTail;
if (queue->blockTail != NULL) {
queue->blockTail->next = block;
}
queue->blockTail = block;
if (queue->blockHead == NULL) {
queue->blockHead = block;
}
}
return block;
}
static bool completeFecBlock(PRTP_AUDIO_QUEUE queue, PRTPA_FEC_BLOCK block) {
uint8_t* shards[RTPA_TOTAL_SHARDS];
// If we don't have enough shards, we can't do anything
if (block->dataShardsReceived + block->fecShardsReceived < RTPA_DATA_SHARDS) {
return false;
}
// If we have all data shards, don't bother with any recovery
LC_ASSERT(block->dataShardsReceived <= RTPA_DATA_SHARDS);
if (block->dataShardsReceived == RTPA_DATA_SHARDS) {
return true;
}
// We have recovery to do. Let's build the array.
for (int i = 0; i < RTPA_DATA_SHARDS; i++) {
shards[i] = (uint8_t*)(block->dataPackets[i] + 1);
}
for (int i = 0; i < RTPA_FEC_SHARDS; i++) {
shards[RTPA_DATA_SHARDS + i] = block->fecPackets[i];
}
int res = reed_solomon_reconstruct(queue->rs, shards, block->marks, RTPA_TOTAL_SHARDS, block->blockSize);
// We should always have enough data to recover the entire block since we checked above.
LC_ASSERT(res == 0);
// We will need to recover the RTP packet using the FEC header
for (int i = 0; i < RTPA_DATA_SHARDS; i++) {
if (block->marks[i]) {
block->dataPackets[i]->header = 0x80; // RTPv2
block->dataPackets[i]->packetType = block->fecHeader.payloadType;
block->dataPackets[i]->sequenceNumber = block->fecHeader.baseSequenceNumber + i;
block->dataPackets[i]->timestamp = block->fecHeader.baseTimestamp + (i * AudioPacketDuration);
block->dataPackets[i]->ssrc = block->fecHeader.ssrc;
block->marks[i] = 0;
}
}
return true;
}
static bool queueHasPacketReady(PRTP_AUDIO_QUEUE queue) {
return queue->blockHead != NULL &&
queue->blockHead->marks[queue->blockHead->nextDataPacketIndex] == 0 &&
queue->blockHead->fecHeader.baseSequenceNumber + queue->blockHead->nextDataPacketIndex == queue->nextRtpSequenceNumber;
}
static bool enforceQueueConstraints(PRTP_AUDIO_QUEUE queue) {
// Empty queue is fine
if (queue->blockHead == NULL) {
return false;
}
// Check that the queue's time constraint is satisfied
if (PltGetMillis() - queue->blockHead->queueTimeMs > queue->maxQueueTimeMs) {
Limelog("Unable to recover audio data block %u to %u (%u+%u=%u received < %u needed)\n",
queue->blockHead->fecHeader.baseSequenceNumber,
queue->blockHead->fecHeader.baseSequenceNumber + RTPA_DATA_SHARDS - 1,
queue->blockHead->dataShardsReceived,
queue->blockHead->fecShardsReceived,
queue->blockHead->dataShardsReceived + queue->blockHead->fecShardsReceived,
RTPA_DATA_SHARDS);
return true;
}
return false;
}
int RtpaAddPacket(PRTP_AUDIO_QUEUE queue, PRTP_PACKET packet, uint16_t length) {
LC_ASSERT(!queue->blockHead || queue->nextRtpSequenceNumber < queue->blockHead->fecHeader.baseSequenceNumber + RTPA_DATA_SHARDS);
PRTPA_FEC_BLOCK fecBlock = getFecBlockForRtpPacket(queue, packet, length);
if (fecBlock == NULL) {
// Reject the packet
return 0;
}
if (packet->packetType == 97) {
uint16_t pos = packet->sequenceNumber - fecBlock->fecHeader.baseSequenceNumber;
// This is validated in getFecBlockForRtpPacket()
LC_ASSERT(pos < RTPA_DATA_SHARDS);
if (fecBlock->marks[pos]) {
// If there was a missing data shard, copy the RTP header and packet data into it
memcpy(fecBlock->dataPackets[pos], packet, length);
fecBlock->marks[pos] = 0;
fecBlock->dataShardsReceived++;
}
else {
// This is a duplicate packet - reject it
return 0;
}
}
else if (packet->packetType == 127) {
PAUDIO_FEC_HEADER fecHeader = (PAUDIO_FEC_HEADER)(packet + 1);
// This is validated in getFecBlockForRtpPacket()
LC_ASSERT(fecHeader->fecShardIndex < RTPA_FEC_SHARDS);
if (fecBlock->marks[RTPA_DATA_SHARDS + fecHeader->fecShardIndex]) {
// If there was a missing FEC shard, copy just the FEC data into it
memcpy(fecBlock->fecPackets[fecHeader->fecShardIndex], fecHeader + 1, length - sizeof(RTP_PACKET) - sizeof(AUDIO_FEC_HEADER));
fecBlock->marks[RTPA_DATA_SHARDS + fecHeader->fecShardIndex] = 0;
fecBlock->fecShardsReceived++;
}
else {
// This is a duplicate packet - reject it
return 0;
}
}
else {
// getFecBlockForRtpPacket() would have already failed
LC_ASSERT(false);
return 0;
}
if ((queue->nextRtpSequenceNumber == UINT16_MAX && queue->oldestRtpBaseSequenceNumber == 0) &&
packet->sequenceNumber != fecBlock->fecHeader.baseSequenceNumber) {
// Our first packet was not the start of an FEC block, so go ahead and queue it
// but ensure nextRtpSequenceNumber is set to the start of the FEC block.
queue->nextRtpSequenceNumber = fecBlock->fecHeader.baseSequenceNumber;
}
else if ((queue->nextRtpSequenceNumber == UINT16_MAX && queue->oldestRtpBaseSequenceNumber == 0) ||
packet->sequenceNumber == queue->nextRtpSequenceNumber) {
queue->nextRtpSequenceNumber = packet->sequenceNumber + 1;
// We are going to return this entry, so update the FEC block
// state to indicate that the caller has already received it.
fecBlock->nextDataPacketIndex++;
// If we've returned all packets in this FEC block, free it.
if (queue->nextRtpSequenceNumber == fecBlock->fecHeader.baseSequenceNumber + RTPA_DATA_SHARDS) {
LC_ASSERT(fecBlock == queue->blockHead);
LC_ASSERT(fecBlock->nextDataPacketIndex == RTPA_DATA_SHARDS);
freeFecBlockHead(queue);
}
return RTPQ_RET_HANDLE_NOW;
}
// Try to complete the FEC block via data shards or data+FEC shards
if (completeFecBlock(queue, fecBlock)) {
// We completed a FEC block
fecBlock->fullyReassembled = true;
}
if (queueHasPacketReady(queue)) {
return RTPQ_RET_PACKET_READY;
}
// We don't have enough to proceed. Let's ensure we haven't
// violated queue constraints with this FEC block.
if (enforceQueueConstraints(queue)) {
// We need to discard this FEC block and point the next RTP sequence number to the next block
queue->nextRtpSequenceNumber = queue->blockHead->fecHeader.baseSequenceNumber + RTPA_DATA_SHARDS;
// NOTE: Here we elect to just throw away the entire FEC block. We could play back the source
// data that we have, but this is easier. It's also unclear whether playback of partial data
// after a significant delay is actually worse than dropping it due to causing additional
// latency to accumulate in the audio pipeline.
freeFecBlockHead(queue);
}
return queueHasPacketReady(queue) ? RTPQ_RET_PACKET_READY : 0;
}
PRTP_PACKET RtpaGetQueuedPacket(PRTP_AUDIO_QUEUE queue, uint16_t customHeaderLength, uint16_t* length) {
PRTPA_FEC_BLOCK nextBlock = queue->blockHead;
if (nextBlock == NULL) {
return NULL;
}
// Return the next RTP sequence number by indexing into the most recent FEC block
if (queueHasPacketReady(queue)) {
PRTP_PACKET packet = malloc(customHeaderLength + sizeof(RTP_PACKET) + nextBlock->blockSize);
if (packet == NULL) {
return NULL;
}
*length = nextBlock->blockSize + sizeof(RTP_PACKET);
memcpy((uint8_t*)packet + customHeaderLength, nextBlock->dataPackets[nextBlock->nextDataPacketIndex], *length);
nextBlock->nextDataPacketIndex++;
queue->nextRtpSequenceNumber++;
// If we've read everything from this FEC block, remove and free it
if (nextBlock->nextDataPacketIndex == RTPA_DATA_SHARDS) {
freeFecBlockHead(queue);
}
return packet;
}
return NULL;
}

67
src/RtpAudioQueue.h Normal file
View File

@ -0,0 +1,67 @@
#pragma once
#include "Video.h"
#include "rs.h"
#define RTPQ_DEFAULT_QUEUE_TIME 40
#define RTPA_DATA_SHARDS 4
#define RTPA_FEC_SHARDS 2
#define RTPA_TOTAL_SHARDS (RTPA_DATA_SHARDS + RTPA_FEC_SHARDS)
typedef struct _AUDIO_FEC_HEADER {
uint8_t fecShardIndex;
uint8_t payloadType;
uint16_t baseSequenceNumber;
uint32_t baseTimestamp;
uint32_t ssrc;
} AUDIO_FEC_HEADER, *PAUDIO_FEC_HEADER;
typedef struct _RTPA_FEC_BLOCK {
struct _RTPA_FEC_BLOCK* prev;
struct _RTPA_FEC_BLOCK* next;
PRTP_PACKET dataPackets[RTPA_DATA_SHARDS];
uint8_t* fecPackets[RTPA_FEC_SHARDS];
uint8_t marks[RTPA_TOTAL_SHARDS];
AUDIO_FEC_HEADER fecHeader;
uint64_t queueTimeMs;
uint8_t dataShardsReceived;
uint8_t fecShardsReceived;
bool fullyReassembled;
// Used when dequeuing data from FEC blocks for the caller
uint8_t nextDataPacketIndex;
uint16_t blockSize;
// Data for shards comes here
} RTPA_FEC_BLOCK, *PRTPA_FEC_BLOCK;
typedef struct _RTP_AUDIO_QUEUE {
PRTPA_FEC_BLOCK blockHead;
PRTPA_FEC_BLOCK blockTail;
reed_solomon* rs;
uint32_t maxQueueTimeMs;
uint16_t nextRtpSequenceNumber;
uint16_t oldestRtpBaseSequenceNumber;
} RTP_AUDIO_QUEUE, *PRTP_AUDIO_QUEUE;
#define RTPQ_RET_PACKET_CONSUMED 0x1
#define RTPQ_RET_PACKET_READY 0x2
#define RTPQ_RET_HANDLE_NOW 0x4
#define RTPQ_PACKET_CONSUMED(x) ((x) & RTPQ_RET_PACKET_CONSUMED)
#define RTPQ_PACKET_READY(x) ((x) & RTPQ_RET_PACKET_READY)
#define RTPQ_HANDLE_NOW(x) ((x) == RTPQ_RET_HANDLE_NOW)
void RtpaInitializeQueue(PRTP_AUDIO_QUEUE queue);
void RtpaCleanupQueue(PRTP_AUDIO_QUEUE queue);
int RtpaAddPacket(PRTP_AUDIO_QUEUE queue, PRTP_PACKET packet, uint16_t length);
PRTP_PACKET RtpaGetQueuedPacket(PRTP_AUDIO_QUEUE queue, uint16_t customHeaderLength, uint16_t* length);

View File

@ -1,255 +0,0 @@
#include "Limelight-internal.h"
void RtpqInitializeQueue(PRTP_REORDER_QUEUE queue, int maxSize, int maxQueueTimeMs) {
memset(queue, 0, sizeof(*queue));
queue->maxSize = maxSize;
queue->maxQueueTimeMs = maxQueueTimeMs;
queue->nextRtpSequenceNumber = UINT16_MAX;
queue->oldestQueuedTimeMs = UINT64_MAX;
}
void RtpqCleanupQueue(PRTP_REORDER_QUEUE queue) {
while (queue->queueHead != NULL) {
PRTP_QUEUE_ENTRY entry = queue->queueHead;
queue->queueHead = entry->next;
free(entry->packet);
}
}
// newEntry is contained within the packet buffer so we free the whole entry by freeing entry->packet
static bool queuePacket(PRTP_REORDER_QUEUE queue, PRTP_QUEUE_ENTRY newEntry, bool head, PRTP_PACKET packet) {
PRTP_QUEUE_ENTRY entry;
LC_ASSERT(!isBefore16(packet->sequenceNumber, queue->nextRtpSequenceNumber));
// Don't queue duplicates
entry = queue->queueHead;
while (entry != NULL) {
if (entry->packet->sequenceNumber == packet->sequenceNumber) {
return false;
}
entry = entry->next;
}
newEntry->packet = packet;
newEntry->queueTimeMs = PltGetMillis();
newEntry->prev = NULL;
newEntry->next = NULL;
if (queue->oldestQueuedTimeMs == UINT64_MAX) {
queue->oldestQueuedTimeMs = newEntry->queueTimeMs;
}
if (queue->queueHead == NULL) {
LC_ASSERT(queue->queueSize == 0);
queue->queueHead = queue->queueTail = newEntry;
}
else if (head) {
LC_ASSERT(queue->queueSize > 0);
PRTP_QUEUE_ENTRY oldHead = queue->queueHead;
newEntry->next = oldHead;
LC_ASSERT(oldHead->prev == NULL);
oldHead->prev = newEntry;
queue->queueHead = newEntry;
}
else {
LC_ASSERT(queue->queueSize > 0);
PRTP_QUEUE_ENTRY oldTail = queue->queueTail;
newEntry->prev = oldTail;
LC_ASSERT(oldTail->next == NULL);
oldTail->next = newEntry;
queue->queueTail = newEntry;
}
queue->queueSize++;
return true;
}
static void updateOldestQueued(PRTP_REORDER_QUEUE queue) {
PRTP_QUEUE_ENTRY entry;
queue->oldestQueuedTimeMs = UINT64_MAX;
entry = queue->queueHead;
while (entry != NULL) {
if (entry->queueTimeMs < queue->oldestQueuedTimeMs) {
queue->oldestQueuedTimeMs = entry->queueTimeMs;
}
entry = entry->next;
}
}
static PRTP_QUEUE_ENTRY getEntryByLowestSeq(PRTP_REORDER_QUEUE queue) {
PRTP_QUEUE_ENTRY lowestSeqEntry, entry;
lowestSeqEntry = queue->queueHead;
entry = queue->queueHead;
while (entry != NULL) {
if (isBefore16(entry->packet->sequenceNumber, lowestSeqEntry->packet->sequenceNumber)) {
lowestSeqEntry = entry;
}
entry = entry->next;
}
// Remember the updated lowest sequence number
if (lowestSeqEntry != NULL) {
queue->nextRtpSequenceNumber = lowestSeqEntry->packet->sequenceNumber;
}
return lowestSeqEntry;
}
static void removeEntry(PRTP_REORDER_QUEUE queue, PRTP_QUEUE_ENTRY entry) {
LC_ASSERT(entry != NULL);
LC_ASSERT(queue->queueSize > 0);
LC_ASSERT(queue->queueHead != NULL);
LC_ASSERT(queue->queueTail != NULL);
if (queue->queueHead == entry) {
queue->queueHead = entry->next;
}
if (queue->queueTail == entry) {
queue->queueTail = entry->prev;
}
if (entry->prev != NULL) {
entry->prev->next = entry->next;
}
if (entry->next != NULL) {
entry->next->prev = entry->prev;
}
queue->queueSize--;
}
static PRTP_QUEUE_ENTRY enforceQueueConstraints(PRTP_REORDER_QUEUE queue) {
bool dequeuePacket = false;
// Empty queue is fine
if (queue->queueHead == NULL) {
return NULL;
}
// Check that the queue's time constraint is satisfied
if (PltGetMillis() - queue->oldestQueuedTimeMs > queue->maxQueueTimeMs) {
Limelog("Returning RTP packet queued for too long\n");
dequeuePacket = true;
}
// Check that the queue's size constraint is satisfied. We subtract one
// because this is validating that the queue will meet constraints _after_
// the current packet is enqueued.
if (!dequeuePacket && queue->queueSize == queue->maxSize - 1) {
Limelog("Returning RTP packet after queue overgrowth\n");
dequeuePacket = true;
}
if (dequeuePacket) {
// Return the lowest seq queued
return getEntryByLowestSeq(queue);
}
else {
return NULL;
}
}
int RtpqAddPacket(PRTP_REORDER_QUEUE queue, PRTP_PACKET packet, PRTP_QUEUE_ENTRY packetEntry) {
if (queue->nextRtpSequenceNumber != UINT16_MAX &&
isBefore16(packet->sequenceNumber, queue->nextRtpSequenceNumber)) {
// Reject packets behind our current sequence number
return 0;
}
if (queue->queueHead == NULL) {
// Return immediately for an exact match with an empty queue
if (queue->nextRtpSequenceNumber == UINT16_MAX ||
packet->sequenceNumber == queue->nextRtpSequenceNumber) {
queue->nextRtpSequenceNumber = packet->sequenceNumber + 1;
return RTPQ_RET_HANDLE_NOW;
}
else {
// Queue is empty currently so we'll put this packet on there
if (!queuePacket(queue, packetEntry, false, packet)) {
return 0;
}
else {
return RTPQ_RET_PACKET_CONSUMED;
}
}
}
else {
PRTP_QUEUE_ENTRY lowestEntry;
// Validate that the queue remains within our contraints
// and get the lowest element
lowestEntry = enforceQueueConstraints(queue);
// If the queue is now empty after validating queue constraints,
// this packet can be returned immediately
if (lowestEntry == NULL && queue->queueHead == NULL) {
queue->nextRtpSequenceNumber = packet->sequenceNumber + 1;
return RTPQ_RET_HANDLE_NOW;
}
else if (lowestEntry != NULL && queue->nextRtpSequenceNumber != UINT16_MAX &&
isBefore16(packet->sequenceNumber, queue->nextRtpSequenceNumber)) {
// The queue constraints were enforced and a new lowest entry was
// made available for retrieval. This packet was behind the new lowest
// so it will not be consumed by the queue.
return RTPQ_RET_PACKET_READY;
}
// Queue has data inside, so we need to see where this packet fits
if (packet->sequenceNumber == queue->nextRtpSequenceNumber) {
// It fits in a hole where we need a packet, now we have some ready
if (!queuePacket(queue, packetEntry, false, packet)) {
return 0;
}
else {
return RTPQ_RET_PACKET_READY | RTPQ_RET_PACKET_CONSUMED;
}
}
else {
if (!queuePacket(queue, packetEntry, false, packet)) {
return 0;
}
else {
// Constraint validation may have changed the oldest packet to one that
// matches the next sequence number
return RTPQ_RET_PACKET_CONSUMED | ((lowestEntry != NULL) ? RTPQ_RET_PACKET_READY : 0);
}
}
}
}
PRTP_PACKET RtpqGetQueuedPacket(PRTP_REORDER_QUEUE queue) {
PRTP_QUEUE_ENTRY queuedEntry, entry;
// Find the next queued packet
queuedEntry = NULL;
entry = queue->queueHead;
while (entry != NULL) {
if (entry->packet->sequenceNumber == queue->nextRtpSequenceNumber) {
queue->nextRtpSequenceNumber++;
queuedEntry = entry;
removeEntry(queue, entry);
break;
}
entry = entry->next;
}
// Bail if we found nothing
if (queuedEntry == NULL) {
// Update the oldest queued packet time
updateOldestQueued(queue);
return NULL;
}
// We don't update the oldest queued entry here, because we know
// the caller will call again until it receives null
return queuedEntry->packet;
}

View File

@ -1,41 +0,0 @@
#pragma once
#include "Video.h"
#define RTPQ_DEFAULT_MAX_SIZE 16
#define RTPQ_DEFAULT_QUEUE_TIME 40
typedef struct _RTP_QUEUE_ENTRY {
PRTP_PACKET packet;
uint64_t queueTimeMs;
struct _RTP_QUEUE_ENTRY* next;
struct _RTP_QUEUE_ENTRY* prev;
} RTP_QUEUE_ENTRY, *PRTP_QUEUE_ENTRY;
typedef struct _RTP_REORDER_QUEUE {
PRTP_QUEUE_ENTRY queueHead;
PRTP_QUEUE_ENTRY queueTail;
uint64_t oldestQueuedTimeMs;
uint32_t maxQueueTimeMs;
int maxSize;
int queueSize;
uint16_t nextRtpSequenceNumber;
} RTP_REORDER_QUEUE, *PRTP_REORDER_QUEUE;
#define RTPQ_RET_PACKET_CONSUMED 0x1
#define RTPQ_RET_PACKET_READY 0x2
#define RTPQ_RET_HANDLE_NOW 0x4
#define RTPQ_PACKET_CONSUMED(x) ((x) & RTPQ_RET_PACKET_CONSUMED)
#define RTPQ_PACKET_READY(x) ((x) & RTPQ_RET_PACKET_READY)
#define RTPQ_HANDLE_NOW(x) ((x) == RTPQ_RET_HANDLE_NOW)
void RtpqInitializeQueue(PRTP_REORDER_QUEUE queue, int maxSize, int maxQueueTimeMs);
void RtpqCleanupQueue(PRTP_REORDER_QUEUE queue);
int RtpqAddPacket(PRTP_REORDER_QUEUE queue, PRTP_PACKET packet, PRTP_QUEUE_ENTRY packetEntry);
PRTP_PACKET RtpqGetQueuedPacket(PRTP_REORDER_QUEUE queue);