version=pmwiki-2.2.75 ordered=1 urlencoded=1 agent=Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/116.0.0.0 Safari/537.36 author=ZAP charset=UTF-8 csum=ZAP ctime=1522850263 description=Searching for graph’s radius and diameter and central and peripheral vertexes host=188.255.35.115 name=Help.SearchingForGraph’sRadiusAndDiameter rev=27 targets= text=(:Title Searching for graph’s radius and diameter:)%0a(:Description Searching for graph’s radius and diameter and central and peripheral vertexes:)%0a%0a!! Specifications%0a%0a'''The eccentricity of a graph vertex''' is the maximum distance till the distant vertex.%0a%0a'''The radius of a graph''' is the minimum eccentricity among all the vertexes of a graph.%0a%0a'''The diameter of a graph''' is the longest distance among all the pairs of the graph’s vertexes.%0a%0a'''The central vertex of a graph''' is the vertex which eccentricity equals the graph’s radius.%0a%0a'''The peripheral vertex of a graph''' is the vertex which eccentricity equals the graph’s diameter. %0a%0a!! Searching for radius and diameter%0a%0aGraph Online allows users to find radius and diameter. Moreover, it will point out the central and peripheral vertexes. In order to do it choose “Algorithms” and then “Search graph radius and diameter”.%0a%0ahttp://graphonline.ru/wiki/uploads/Справка/radiusAndDiameter.gif%0a%0aImplementation of the algorithm for JavaScript could be found at http://graphonline.ru/script/plugins/RadiusAndDiameter.js%0a%0a time=1707848360 title=Searching for graph’s radius and diameter author:1707848360=ZAP csum:1707848360=ZAP diff:1707848360:1707848317:minor= host:1707848360=188.255.35.115 author:1707848317=ZAP csum:1707848317=ZAP diff:1707848317:1707848278:minor= host:1707848317=188.255.35.115 author:1707848278=ZAP csum:1707848278=ZAP diff:1707848278:1707848237:minor= host:1707848278=188.255.35.115 author:1707848237=ZAP csum:1707848237=ZAP diff:1707848237:1707848205:minor= host:1707848237=188.255.35.115 author:1707848205=ZAP csum:1707848205=ZAP diff:1707848205:1707848174:minor= host:1707848205=188.255.35.115 author:1707848174=ZAP csum:1707848174=ZAP diff:1707848174:1707848142:minor= host:1707848174=188.255.35.115 author:1707848142=ZAP csum:1707848142=ZAP diff:1707848142:1707848104:minor= host:1707848142=188.255.35.115 author:1707848104=ZAP csum:1707848104=ZAP diff:1707848104:1707848073:minor= host:1707848104=188.255.35.115 author:1707848073=ZAP csum:1707848073=ZAP diff:1707848073:1707848038:minor= host:1707848073=188.255.35.115 author:1707848038=ZAP csum:1707848038=ZAP diff:1707848038:1707847996:minor= host:1707848038=188.255.35.115 author:1707847996=ZAP csum:1707847996=ZAP diff:1707847996:1707847976:minor= host:1707847996=188.255.35.115 author:1707847976=ZAP csum:1707847976=ZAP diff:1707847976:1707847956:cWindowssystemini= host:1707847976=188.255.35.115 author:1707847956=cWindowssystemini csum:1707847956=ZAP diff:1707847956:1707847936:minor= host:1707847956=188.255.35.115 author:1707847936=ZAP csum:1707847936=c:/Windows/system.ini diff:1707847936:1707847895:minor= host:1707847936=188.255.35.115 author:1707847895=ZAP csum:1707847895=ZAP diff:1707847895:1707847863:minor= host:1707847895=188.255.35.115 author:1707847863=ZAP csum:1707847863=ZAP diff:1707847863:1707847832:minor= host:1707847863=188.255.35.115 author:1707847832=ZAP csum:1707847832=ZAP diff:1707847832:1707847799:minor= host:1707847832=188.255.35.115 author:1707847799=ZAP csum:1707847799=ZAP diff:1707847799:1707847766:minor= host:1707847799=188.255.35.115 author:1707847766=ZAP csum:1707847766=ZAP diff:1707847766:1707847730:minor=1,23d0%0a%3c (:Title Searching for graph’s radius and diameter:)%0a%3c (:Description Searching for graph’s radius and diameter and central and peripheral vertexes:)%0a%3c %0a%3c !! Specifications%0a%3c %0a%3c '''The eccentricity of a graph vertex''' is the maximum distance till the distant vertex.%0a%3c %0a%3c '''The radius of a graph''' is the minimum eccentricity among all the vertexes of a graph.%0a%3c %0a%3c '''The diameter of a graph''' is the longest distance among all the pairs of the graph’s vertexes.%0a%3c %0a%3c '''The central vertex of a graph''' is the vertex which eccentricity equals the graph’s radius.%0a%3c %0a%3c '''The peripheral vertex of a graph''' is the vertex which eccentricity equals the graph’s diameter. %0a%3c %0a%3c !! Searching for radius and diameter%0a%3c %0a%3c Graph Online allows users to find radius and diameter. Moreover, it will point out the central and peripheral vertexes. In order to do it choose “Algorithms” and then “Search graph radius and diameter”.%0a%3c %0a%3c http://graphonline.ru/wiki/uploads/Справка/radiusAndDiameter.gif%0a%3c %0a%3c Implementation of the algorithm for JavaScript could be found at http://graphonline.ru/script/plugins/RadiusAndDiameter.js%0a%3c %0a host:1707847766=188.255.35.115 author:1707847730=ZAP csum:1707847730=ZAP diff:1707847730:1707847716:minor=0a1,23%0a> (:Title Searching for graph’s radius and diameter:)%0a> (:Description Searching for graph’s radius and diameter and central and peripheral vertexes:)%0a> %0a> !! Specifications%0a> %0a> '''The eccentricity of a graph vertex''' is the maximum distance till the distant vertex.%0a> %0a> '''The radius of a graph''' is the minimum eccentricity among all the vertexes of a graph.%0a> %0a> '''The diameter of a graph''' is the longest distance among all the pairs of the graph’s vertexes.%0a> %0a> '''The central vertex of a graph''' is the vertex which eccentricity equals the graph’s radius.%0a> %0a> '''The peripheral vertex of a graph''' is the vertex which eccentricity equals the graph’s diameter. %0a> %0a> !! Searching for radius and diameter%0a> %0a> Graph Online allows users to find radius and diameter. Moreover, it will point out the central and peripheral vertexes. In order to do it choose “Algorithms” and then “Search graph radius and diameter”.%0a> %0a> http://graphonline.ru/wiki/uploads/Справка/radiusAndDiameter.gif%0a> %0a> Implementation of the algorithm for JavaScript could be found at http://graphonline.ru/script/plugins/RadiusAndDiameter.js%0a> %0a host:1707847730=188.255.35.115 author:1707847716=ZAP csum:1707847716=ZAP diff:1707847716:1707847645:minor= host:1707847716=188.255.35.115 author:1707847645=ZAP csum:1707847645=ZAP diff:1707847645:1707828029:minor= host:1707847645=188.255.35.115 author:1707828029=ZAP csum:1707828029=ZAP diff:1707828029:1707828028:minor= host:1707828029=188.255.35.115 author:1707828028=ZAP csum:1707828028=ZAP diff:1707828028:1707826374:minor= host:1707828028=188.255.35.115 author:1707826374=ZAP csum:1707826374=ZAP diff:1707826374:1522850263:minor= diff:1707826374:1707826374:minor= host:1707826374=188.255.35.115