clean up CellularSampler

This commit is contained in:
dfsek 2022-04-24 23:14:17 -07:00
parent cef185b07d
commit 3f48b616fe
5 changed files with 292 additions and 389 deletions

View File

@ -1,7 +1,6 @@
package com.dfsek.terra.noise_bench;
import com.dfsek.terra.addons.noise.samplers.noise.CellularSampler;
import com.dfsek.terra.api.block.state.properties.enums.RailShape;
import com.dfsek.terra.addons.noise.samplers.noise.cellular.CellularSampler;
import com.dfsek.terra.api.noise.NoiseSampler;
import com.dfsek.terra.noise_bench.old.OldCellularSampler;
@ -11,7 +10,6 @@ import org.openjdk.jmh.annotations.Fork;
import org.openjdk.jmh.annotations.Level;
import org.openjdk.jmh.annotations.Measurement;
import org.openjdk.jmh.annotations.Mode;
import org.openjdk.jmh.annotations.Param;
import org.openjdk.jmh.annotations.Scope;
import org.openjdk.jmh.annotations.Setup;
import org.openjdk.jmh.annotations.State;
@ -73,37 +71,37 @@ public class Cellular {
}
@Benchmark()
@Warmup(iterations = 25, time = 300, timeUnit = MILLISECONDS)
@Warmup(iterations = 25, time = 200, timeUnit = MILLISECONDS)
@Measurement(iterations = 15, time = 200, timeUnit = MILLISECONDS)
@Fork(warmups = 2, value = 3)
@BenchmarkMode(Mode.AverageTime)
@BenchmarkMode(Mode.Throughput)
public void old2D(OldCellularParameters parameters, Blackhole blackhole) {
blackhole.consume(parameters.sampler.noise(parameters.seed, parameters.x, parameters.y));
}
@Benchmark
@Warmup(iterations = 25, time = 300, timeUnit = MILLISECONDS)
@Warmup(iterations = 25, time = 200, timeUnit = MILLISECONDS)
@Measurement(iterations = 15, time = 200, timeUnit = MILLISECONDS)
@Fork(warmups = 2, value = 3)
@BenchmarkMode(Mode.AverageTime)
@BenchmarkMode(Mode.Throughput)
public void old3D(OldCellularParameters parameters, Blackhole blackhole) {
blackhole.consume(parameters.sampler.noise(parameters.seed, parameters.x, parameters.y, parameters.z));
}
@Benchmark
@Warmup(iterations = 25, time = 300, timeUnit = MILLISECONDS)
@Warmup(iterations = 25, time = 200, timeUnit = MILLISECONDS)
@Measurement(iterations = 15, time = 200, timeUnit = MILLISECONDS)
@Fork(warmups = 2, value = 3)
@BenchmarkMode(Mode.AverageTime)
@BenchmarkMode(Mode.Throughput)
public void new2D(CellularParameters parameters, Blackhole blackhole) {
blackhole.consume(parameters.sampler.noise(parameters.seed, parameters.x, parameters.y));
}
@Benchmark
@Warmup(iterations = 25, time = 300, timeUnit = MILLISECONDS)
@Warmup(iterations = 25, time = 200, timeUnit = MILLISECONDS)
@Measurement(iterations = 15, time = 200, timeUnit = MILLISECONDS)
@Fork(warmups = 2, value = 3)
@BenchmarkMode(Mode.AverageTime)
@BenchmarkMode(Mode.Throughput)
public void new3D(CellularParameters parameters, Blackhole blackhole) {
blackhole.consume(parameters.sampler.noise(parameters.seed, parameters.x, parameters.y, parameters.z));
}

View File

@ -40,7 +40,7 @@ import com.dfsek.terra.addons.noise.samplers.arithmetic.MaxSampler;
import com.dfsek.terra.addons.noise.samplers.arithmetic.MinSampler;
import com.dfsek.terra.addons.noise.samplers.arithmetic.MultiplicationSampler;
import com.dfsek.terra.addons.noise.samplers.arithmetic.SubtractionSampler;
import com.dfsek.terra.addons.noise.samplers.noise.CellularSampler;
import com.dfsek.terra.addons.noise.samplers.noise.cellular.CellularSampler;
import com.dfsek.terra.addons.noise.samplers.noise.random.GaussianNoiseSampler;
import com.dfsek.terra.addons.noise.samplers.noise.random.PositiveWhiteNoiseSampler;
import com.dfsek.terra.addons.noise.samplers.noise.random.WhiteNoiseSampler;

View File

@ -10,7 +10,7 @@ package com.dfsek.terra.addons.noise.config.templates.noise;
import com.dfsek.tectonic.api.config.template.annotations.Default;
import com.dfsek.tectonic.api.config.template.annotations.Value;
import com.dfsek.terra.addons.noise.samplers.noise.CellularSampler;
import com.dfsek.terra.addons.noise.samplers.noise.cellular.CellularSampler;
import com.dfsek.terra.addons.noise.samplers.noise.simplex.OpenSimplex2Sampler;
import com.dfsek.terra.api.config.meta.Meta;
import com.dfsek.terra.api.noise.NoiseSampler;

View File

@ -0,0 +1,277 @@
/*
* Copyright (c) 2020-2021 Polyhedral Development
*
* The Terra Core Addons are licensed under the terms of the MIT License. For more details,
* reference the LICENSE file in this module's root directory.
*/
package com.dfsek.terra.addons.noise.samplers.noise.cellular;
import com.dfsek.terra.addons.noise.samplers.noise.NoiseFunction;
import net.jafama.FastMath;
import com.dfsek.terra.addons.noise.samplers.noise.simplex.OpenSimplex2Sampler;
import com.dfsek.terra.api.noise.NoiseSampler;
/**
* NoiseSampler implementation for Cellular (Voronoi/Worley) Noise.
*/
public class CellularSampler extends NoiseFunction {
private DistanceFunction distanceFunction = DistanceFunction.EuclideanSq;
private ReturnType returnType = ReturnType.Distance;
private double jitterModifier = 1.0;
private NoiseSampler noiseLookup;
public CellularSampler() {
noiseLookup = new OpenSimplex2Sampler();
}
public void setDistanceFunction(DistanceFunction distanceFunction) {
this.distanceFunction = distanceFunction;
}
public void setJitterModifier(double jitterModifier) {
this.jitterModifier = jitterModifier;
}
public void setNoiseLookup(NoiseSampler noiseLookup) {
this.noiseLookup = noiseLookup;
}
public void setReturnType(ReturnType returnType) {
this.returnType = returnType;
}
@Override
public double getNoiseRaw(long sl, double x, double y) {
int seed = (int) sl;
int xr = fastRound(x);
int yr = fastRound(y);
double distance0 = Double.MAX_VALUE;
double distance1 = Double.MAX_VALUE;
double distance2 = Double.MAX_VALUE;
int closestHash = 0;
double cellularJitter = 0.43701595 * jitterModifier;
int xPrimed = (xr - 1) * PRIME_X;
int yPrimedBase = (yr - 1) * PRIME_Y;
double centerX = x;
double centerY = y;
for(int xi = xr - 1; xi <= xr + 1; xi++) {
int yPrimed = yPrimedBase;
for(int yi = yr - 1; yi <= yr + 1; yi++) {
int hash = hash(seed, xPrimed, yPrimed);
int idx = hash & (255 << 1);
double vecX = (xi - x) + RandomVectors.RAND_VECS_2D[idx] * cellularJitter;
double vecY = (yi - y) + RandomVectors.RAND_VECS_2D[idx | 1] * cellularJitter;
double newDistance = distanceFunction.getDistance(vecX, vecY);
distance1 = fastMax(fastMin(distance1, newDistance), distance0);
if(newDistance < distance0) {
distance0 = newDistance;
closestHash = hash;
centerX = ((xi + RandomVectors.RAND_VECS_2D[idx] * cellularJitter) / frequency);
centerY = ((yi + RandomVectors.RAND_VECS_2D[idx | 1] * cellularJitter) / frequency);
} else if(newDistance < distance1) {
distance2 = distance1;
distance1 = newDistance;
} else if(newDistance < distance2) {
distance2 = newDistance;
}
yPrimed += PRIME_Y;
}
xPrimed += PRIME_X;
}
if(distanceFunction == DistanceFunction.Euclidean && returnType != ReturnType.CellValue) {
distance0 = fastSqrt(distance0);
if(returnType != ReturnType.CellValue) {
distance1 = fastSqrt(distance1);
}
}
return switch(returnType) {
case CellValue -> closestHash * (1 / 2147483648.0);
case Distance -> distance0 - 1;
case Distance2 -> distance1 - 1;
case Distance2Add -> (distance1 + distance0) * 0.5 - 1;
case Distance2Sub -> distance1 - distance0 - 1;
case Distance2Mul -> distance1 * distance0 * 0.5 - 1;
case Distance2Div -> distance0 / distance1 - 1;
case NoiseLookup -> noiseLookup.noise(sl, centerX, centerY);
case Distance3 -> distance2 - 1;
case Distance3Add -> (distance2 + distance0) * 0.5 - 1;
case Distance3Sub -> distance2 - distance0 - 1;
case Distance3Mul -> distance2 * distance0 - 1;
case Distance3Div -> distance0 / distance2 - 1;
case Angle -> FastMath.atan2(y / frequency - centerY, x / frequency - centerX);
};
}
@Override
public double getNoiseRaw(long sl, double x, double y, double z) {
int seed = (int) sl;
int xr = fastRound(x);
int yr = fastRound(y);
int zr = fastRound(z);
double distance0 = Double.MAX_VALUE;
double distance1 = Double.MAX_VALUE;
double distance2 = Double.MAX_VALUE;
int closestHash = 0;
double cellularJitter = 0.39614353 * jitterModifier;
int xPrimed = (xr - 1) * PRIME_X;
int yPrimedBase = (yr - 1) * PRIME_Y;
int zPrimedBase = (zr - 1) * PRIME_Z;
double centerX = x;
double centerY = y;
double centerZ = z;
for(int xi = xr - 1; xi <= xr + 1; xi++) {
int yPrimed = yPrimedBase;
for(int yi = yr - 1; yi <= yr + 1; yi++) {
int zPrimed = zPrimedBase;
for(int zi = zr - 1; zi <= zr + 1; zi++) {
int hash = hash(seed, xPrimed, yPrimed, zPrimed);
int idx = hash & (255 << 2);
double vecX = (xi - x) + RandomVectors.RAND_VECS_3D[idx] * cellularJitter;
double vecY = (yi - y) + RandomVectors.RAND_VECS_3D[idx | 1] * cellularJitter;
double vecZ = (zi - z) + RandomVectors.RAND_VECS_3D[idx | 2] * cellularJitter;
double newDistance = distanceFunction.getDistance(vecX, vecY, vecZ);
if(newDistance < distance0) {
distance0 = newDistance;
closestHash = hash;
centerX = ((xi + RandomVectors.RAND_VECS_3D[idx] * cellularJitter) / frequency);
centerY = ((yi + RandomVectors.RAND_VECS_3D[idx | 1] * cellularJitter) / frequency);
centerZ = ((zi + RandomVectors.RAND_VECS_3D[idx | 2] * cellularJitter) / frequency);
} else if(newDistance < distance1) {
distance2 = distance1;
distance1 = newDistance;
} else if(newDistance < distance2) {
distance2 = newDistance;
}
zPrimed += PRIME_Z;
}
yPrimed += PRIME_Y;
}
xPrimed += PRIME_X;
}
if(distanceFunction == DistanceFunction.Euclidean &&
returnType != ReturnType.CellValue) { // optimisation: dont compute sqrt until end
distance0 = fastSqrt(distance0);
if(returnType != ReturnType.CellValue) {
distance1 = fastSqrt(distance1);
}
}
return switch(returnType) {
case CellValue -> closestHash * (1 / 2147483648.0);
case Distance -> distance0 - 1;
case Distance2 -> distance1 - 1;
case Distance2Add -> (distance1 + distance0) * 0.5 - 1;
case Distance2Sub -> distance1 - distance0 - 1;
case Distance2Mul -> distance1 * distance0 * 0.5 - 1;
case Distance2Div -> distance0 / distance1 - 1;
case NoiseLookup -> noiseLookup.noise(sl, centerX, centerY, centerZ);
case Distance3 -> distance2 - 1;
case Distance3Add -> (distance2 + distance0) * 0.5 - 1;
case Distance3Sub -> distance2 - distance0 - 1;
case Distance3Mul -> distance2 * distance0 - 1;
case Distance3Div -> distance0 / distance2 - 1;
case Angle -> FastMath.atan2(y / frequency - centerY, x / frequency - centerX);
};
}
public enum DistanceFunction {
Euclidean {
@Override
public double getDistance(double x, double y) {
return x * x + y * y; // optimisation: dont compute sqrt until end
}
@Override
public double getDistance(double x, double y, double z) {
return x * x + y * y + z * z; // optimisation: dont compute sqrt until end
}
},
EuclideanSq {
@Override
public double getDistance(double x, double y) {
return x * x + y * y;
}
@Override
public double getDistance(double x, double y, double z) {
return x * x + y * y + z + z;
}
},
Manhattan {
@Override
public double getDistance(double x, double y) {
return fastAbs(x) + fastAbs(y);
}
@Override
public double getDistance(double x, double y, double z) {
return fastAbs(x) + fastAbs(y) + fastAbs(z);
}
},
Hybrid {
@Override
public double getDistance(double x, double y) {
return (fastAbs(x) + fastAbs(y)) +
(x * x + y * y);
}
@Override
public double getDistance(double x, double y, double z) {
return (fastAbs(x) + fastAbs(y) + fastAbs(z)) +
(x * x + y * y + z * z);
}
};
public abstract double getDistance(double x, double y);
public abstract double getDistance(double x, double y, double z);
}
public enum ReturnType {
CellValue,
Distance,
Distance2,
Distance2Add,
Distance2Sub,
Distance2Mul,
Distance2Div,
NoiseLookup,
Distance3,
Distance3Add,
Distance3Sub,
Distance3Mul,
Distance3Div,
Angle
}
}

View File

@ -1,23 +1,7 @@
/*
* Copyright (c) 2020-2021 Polyhedral Development
*
* The Terra Core Addons are licensed under the terms of the MIT License. For more details,
* reference the LICENSE file in this module's root directory.
*/
package com.dfsek.terra.addons.noise.samplers.noise.cellular;
package com.dfsek.terra.addons.noise.samplers.noise;
import net.jafama.FastMath;
import com.dfsek.terra.addons.noise.samplers.noise.simplex.OpenSimplex2Sampler;
import com.dfsek.terra.api.noise.NoiseSampler;
/**
* NoiseSampler implementation for Cellular (Voronoi/Worley) Noise.
*/
public class CellularSampler extends NoiseFunction {
private static final double[] RAND_VECS_3D = {
public class RandomVectors {
static final double[] RAND_VECS_3D = {
-0.7292736885d, -0.6618439697d, 0.1735581948d, 0, 0.790292081d, -0.5480887466d, -0.2739291014d, 0, 0.7217578935d, 0.6226212466d,
-0.3023380997d, 0, 0.565683137d, -0.8208298145d, -0.0790000257d, 0, 0.760049034d, -0.5555979497d, -0.3370999617d, 0,
0.3713945616d, 0.5011264475d, 0.7816254623d, 0, -0.1277062463d, -0.4254438999d, -0.8959289049d, 0, -0.2881560924d,
@ -125,8 +109,7 @@ public class CellularSampler extends NoiseFunction {
-0.1842489331d, -0.9777375055d, -0.1004076743d, 0, 0.0775473789d, -0.9111505856d, 0.4047110257d, 0, 0.1399838409d,
0.7601631212d, -0.6344734459d, 0, 0.4484419361d, -0.845289248d, 0.2904925424d, 0
};
private static final double[] RAND_VECS_2D = {
static final double[] RAND_VECS_2D = {
-0.2700222198d, -0.9628540911d, 0.3863092627d, -0.9223693152d, 0.04444859006d, -0.999011673d, -0.5992523158d, -0.8005602176d,
-0.7819280288d, 0.6233687174d, 0.9464672271d, 0.3227999196d, -0.6514146797d, -0.7587218957d, 0.9378472289d, 0.347048376d,
-0.8497875957d, -0.5271252623d, -0.879042592d, 0.4767432447d, -0.892300288d, -0.4514423508d, -0.379844434d, -0.9250503802d,
@ -192,359 +175,4 @@ public class CellularSampler extends NoiseFunction {
0.01426758847d, -0.9998982128d, -0.6734383991d, 0.7392433447d, 0.639412098d, -0.7688642071d, 0.9211571421d, 0.3891908523d,
-0.146637214d, -0.9891903394d, -0.782318098d, 0.6228791163d, -0.5039610839d, -0.8637263605d, -0.7743120191d, -0.6328039957d,
};
private DistanceFunction distanceFunction = DistanceFunction.EuclideanSq;
private ReturnType returnType = ReturnType.Distance;
private double jitterModifier = 1.0;
private NoiseSampler noiseLookup;
public CellularSampler() {
noiseLookup = new OpenSimplex2Sampler();
}
public void setDistanceFunction(DistanceFunction distanceFunction) {
this.distanceFunction = distanceFunction;
}
public void setJitterModifier(double jitterModifier) {
this.jitterModifier = jitterModifier;
}
public void setNoiseLookup(NoiseSampler noiseLookup) {
this.noiseLookup = noiseLookup;
}
public void setReturnType(ReturnType returnType) {
this.returnType = returnType;
}
@Override
public double getNoiseRaw(long sl, double x, double y) {
int seed = (int) sl;
int xr = fastRound(x);
int yr = fastRound(y);
double distance0 = Double.MAX_VALUE;
double distance1 = Double.MAX_VALUE;
double distance2 = Double.MAX_VALUE;
int closestHash = 0;
double cellularJitter = 0.43701595 * jitterModifier;
int xPrimed = (xr - 1) * PRIME_X;
int yPrimedBase = (yr - 1) * PRIME_Y;
double centerX = x;
double centerY = y;
switch(distanceFunction) {
default:
case Euclidean:
case EuclideanSq:
for(int xi = xr - 1; xi <= xr + 1; xi++) {
int yPrimed = yPrimedBase;
for(int yi = yr - 1; yi <= yr + 1; yi++) {
int hash = hash(seed, xPrimed, yPrimed);
int idx = hash & (255 << 1);
double vecX = (xi - x) + RAND_VECS_2D[idx] * cellularJitter;
double vecY = (yi - y) + RAND_VECS_2D[idx | 1] * cellularJitter;
double newDistance = vecX * vecX + vecY * vecY;
distance1 = fastMax(fastMin(distance1, newDistance), distance0);
if(newDistance < distance0) {
distance0 = newDistance;
closestHash = hash;
centerX = ((xi + RAND_VECS_2D[idx] * cellularJitter) / frequency);
centerY = ((yi + RAND_VECS_2D[idx | 1] * cellularJitter) / frequency);
} else if(newDistance < distance1) {
distance2 = distance1;
distance1 = newDistance;
} else if(newDistance < distance2) {
distance2 = newDistance;
}
yPrimed += PRIME_Y;
}
xPrimed += PRIME_X;
}
break;
case Manhattan:
for(int xi = xr - 1; xi <= xr + 1; xi++) {
int yPrimed = yPrimedBase;
for(int yi = yr - 1; yi <= yr + 1; yi++) {
int hash = hash(seed, xPrimed, yPrimed);
int idx = hash & (255 << 1);
double vecX = (xi - x) + RAND_VECS_2D[idx] * cellularJitter;
double vecY = (yi - y) + RAND_VECS_2D[idx | 1] * cellularJitter;
double newDistance = fastAbs(vecX) + fastAbs(vecY);
distance1 = fastMax(fastMin(distance1, newDistance), distance0);
if(newDistance < distance0) {
distance0 = newDistance;
closestHash = hash;
centerX = ((xi + RAND_VECS_2D[idx] * cellularJitter) / frequency);
centerY = ((yi + RAND_VECS_2D[idx | 1] * cellularJitter) / frequency);
} else if(newDistance < distance1) {
distance2 = distance1;
distance1 = newDistance;
} else if(newDistance < distance2) {
distance2 = newDistance;
}
yPrimed += PRIME_Y;
}
xPrimed += PRIME_X;
}
break;
case Hybrid:
for(int xi = xr - 1; xi <= xr + 1; xi++) {
int yPrimed = yPrimedBase;
for(int yi = yr - 1; yi <= yr + 1; yi++) {
int hash = hash(seed, xPrimed, yPrimed);
int idx = hash & (255 << 1);
double vecX = (xi - x) + RAND_VECS_2D[idx] * cellularJitter;
double vecY = (yi - y) + RAND_VECS_2D[idx | 1] * cellularJitter;
double newDistance = (fastAbs(vecX) + fastAbs(vecY)) + (vecX * vecX + vecY * vecY);
distance1 = fastMax(fastMin(distance1, newDistance), distance0);
if(newDistance < distance0) {
distance0 = newDistance;
closestHash = hash;
centerX = ((xi + RAND_VECS_2D[idx] * cellularJitter) / frequency);
centerY = ((yi + RAND_VECS_2D[idx | 1] * cellularJitter) / frequency);
} else if(newDistance < distance1) {
distance2 = distance1;
distance1 = newDistance;
} else if(newDistance < distance2) {
distance2 = newDistance;
}
yPrimed += PRIME_Y;
}
xPrimed += PRIME_X;
}
break;
}
if(distanceFunction == DistanceFunction.Euclidean && returnType != ReturnType.CellValue) {
distance0 = fastSqrt(distance0);
if(returnType != ReturnType.CellValue) {
distance1 = fastSqrt(distance1);
}
}
return switch(returnType) {
case CellValue -> closestHash * (1 / 2147483648.0);
case Distance -> distance0 - 1;
case Distance2 -> distance1 - 1;
case Distance2Add -> (distance1 + distance0) * 0.5 - 1;
case Distance2Sub -> distance1 - distance0 - 1;
case Distance2Mul -> distance1 * distance0 * 0.5 - 1;
case Distance2Div -> distance0 / distance1 - 1;
case NoiseLookup -> noiseLookup.noise(sl, centerX, centerY);
case Distance3 -> distance2 - 1;
case Distance3Add -> (distance2 + distance0) * 0.5 - 1;
case Distance3Sub -> distance2 - distance0 - 1;
case Distance3Mul -> distance2 * distance0 - 1;
case Distance3Div -> distance0 / distance2 - 1;
case Angle -> FastMath.atan2(y / frequency - centerY, x / frequency - centerX);
};
}
@Override
public double getNoiseRaw(long sl, double x, double y, double z) {
int seed = (int) sl;
int xr = fastRound(x);
int yr = fastRound(y);
int zr = fastRound(z);
double distance0 = Double.MAX_VALUE;
double distance1 = Double.MAX_VALUE;
double distance2 = Double.MAX_VALUE;
int closestHash = 0;
double cellularJitter = 0.39614353 * jitterModifier;
int xPrimed = (xr - 1) * PRIME_X;
int yPrimedBase = (yr - 1) * PRIME_Y;
int zPrimedBase = (zr - 1) * PRIME_Z;
double centerX = x;
double centerY = y;
double centerZ = z;
switch(distanceFunction) {
case Euclidean:
case EuclideanSq:
for(int xi = xr - 1; xi <= xr + 1; xi++) {
int yPrimed = yPrimedBase;
for(int yi = yr - 1; yi <= yr + 1; yi++) {
int zPrimed = zPrimedBase;
for(int zi = zr - 1; zi <= zr + 1; zi++) {
int hash = hash(seed, xPrimed, yPrimed, zPrimed);
int idx = hash & (255 << 2);
double vecX = (xi - x) + RAND_VECS_3D[idx] * cellularJitter;
double vecY = (yi - y) + RAND_VECS_3D[idx | 1] * cellularJitter;
double vecZ = (zi - z) + RAND_VECS_3D[idx | 2] * cellularJitter;
double newDistance = vecX * vecX + vecY * vecY + vecZ * vecZ;
if(newDistance < distance0) {
distance0 = newDistance;
closestHash = hash;
centerX = ((xi + RAND_VECS_3D[idx] * cellularJitter) / frequency);
centerY = ((yi + RAND_VECS_3D[idx | 1] * cellularJitter) / frequency);
centerZ = ((zi + RAND_VECS_3D[idx | 2] * cellularJitter) / frequency);
} else if(newDistance < distance1) {
distance2 = distance1;
distance1 = newDistance;
} else if(newDistance < distance2) {
distance2 = newDistance;
}
zPrimed += PRIME_Z;
}
yPrimed += PRIME_Y;
}
xPrimed += PRIME_X;
}
break;
case Manhattan:
for(int xi = xr - 1; xi <= xr + 1; xi++) {
int yPrimed = yPrimedBase;
for(int yi = yr - 1; yi <= yr + 1; yi++) {
int zPrimed = zPrimedBase;
for(int zi = zr - 1; zi <= zr + 1; zi++) {
int hash = hash(seed, xPrimed, yPrimed, zPrimed);
int idx = hash & (255 << 2);
double vecX = (xi - x) + RAND_VECS_3D[idx] * cellularJitter;
double vecY = (yi - y) + RAND_VECS_3D[idx | 1] * cellularJitter;
double vecZ = (zi - z) + RAND_VECS_3D[idx | 2] * cellularJitter;
double newDistance = fastAbs(vecX) + fastAbs(vecY) + fastAbs(vecZ);
if(newDistance < distance0) {
distance0 = newDistance;
closestHash = hash;
centerX = ((xi + RAND_VECS_3D[idx] * cellularJitter) / frequency);
centerY = ((yi + RAND_VECS_3D[idx | 1] * cellularJitter) / frequency);
centerZ = ((zi + RAND_VECS_3D[idx | 2] * cellularJitter) / frequency);
} else if(newDistance < distance1) {
distance2 = distance1;
distance1 = newDistance;
} else if(newDistance < distance2) {
distance2 = newDistance;
}
zPrimed += PRIME_Z;
}
yPrimed += PRIME_Y;
}
xPrimed += PRIME_X;
}
break;
case Hybrid:
for(int xi = xr - 1; xi <= xr + 1; xi++) {
int yPrimed = yPrimedBase;
for(int yi = yr - 1; yi <= yr + 1; yi++) {
int zPrimed = zPrimedBase;
for(int zi = zr - 1; zi <= zr + 1; zi++) {
int hash = hash(seed, xPrimed, yPrimed, zPrimed);
int idx = hash & (255 << 2);
double vecX = (xi - x) + RAND_VECS_3D[idx] * cellularJitter;
double vecY = (yi - y) + RAND_VECS_3D[idx | 1] * cellularJitter;
double vecZ = (zi - z) + RAND_VECS_3D[idx | 2] * cellularJitter;
double newDistance = (fastAbs(vecX) + fastAbs(vecY) + fastAbs(vecZ)) +
(vecX * vecX + vecY * vecY + vecZ * vecZ);
distance1 = fastMax(fastMin(distance1, newDistance), distance0);
if(newDistance < distance0) {
distance0 = newDistance;
closestHash = hash;
centerX = ((xi + RAND_VECS_3D[idx] * cellularJitter) / frequency);
centerY = ((yi + RAND_VECS_3D[idx | 1] * cellularJitter) / frequency);
centerZ = ((zi + RAND_VECS_3D[idx | 2] * cellularJitter) / frequency);
} else if(newDistance < distance1) {
distance2 = distance1;
distance1 = newDistance;
} else if(newDistance < distance2) {
distance2 = newDistance;
}
zPrimed += PRIME_Z;
}
yPrimed += PRIME_Y;
}
xPrimed += PRIME_X;
}
break;
default:
break;
}
if(distanceFunction == DistanceFunction.Euclidean && returnType != ReturnType.CellValue) {
distance0 = fastSqrt(distance0);
if(returnType != ReturnType.CellValue) {
distance1 = fastSqrt(distance1);
}
}
return switch(returnType) {
case CellValue -> closestHash * (1 / 2147483648.0);
case Distance -> distance0 - 1;
case Distance2 -> distance1 - 1;
case Distance2Add -> (distance1 + distance0) * 0.5 - 1;
case Distance2Sub -> distance1 - distance0 - 1;
case Distance2Mul -> distance1 * distance0 * 0.5 - 1;
case Distance2Div -> distance0 / distance1 - 1;
case NoiseLookup -> noiseLookup.noise(sl, centerX, centerY, centerZ);
case Distance3 -> distance2 - 1;
case Distance3Add -> (distance2 + distance0) * 0.5 - 1;
case Distance3Sub -> distance2 - distance0 - 1;
case Distance3Mul -> distance2 * distance0 - 1;
case Distance3Div -> distance0 / distance2 - 1;
case Angle -> FastMath.atan2(y / frequency - centerY, x / frequency - centerX);
};
}
public enum DistanceFunction {
Euclidean,
EuclideanSq,
Manhattan,
Hybrid
}
public enum ReturnType {
CellValue,
Distance,
Distance2,
Distance2Add,
Distance2Sub,
Distance2Mul,
Distance2Div,
NoiseLookup,
Distance3,
Distance3Add,
Distance3Sub,
Distance3Mul,
Distance3Div,
Angle
}
}