package com.volmit.iris.util; import java.util.Random; /** * A speed-improved simplex noise algorithm. * *

* Based on example code by Stefan Gustavson (stegu@itn.liu.se). Optimisations * by Peter Eastman (peastman@drizzle.stanford.edu). Better rank ordering method * by Stefan Gustavson in 2012. * *

* This could be sped up even further, but it's useful as is. */ public class SNG extends PerlinNoise { protected static final double SQRT_3 = 1.7320508075688772; // Math.sqrt(3) protected static final double F2 = 0.5 * (SQRT_3 - 1); protected static final double G2 = (3 - SQRT_3) / 6; protected static final double G22 = G2 * 2.0 - 1; protected static final double F3 = 1.0 / 3.0; protected static final double G3 = 1.0 / 6.0; protected static final double G32 = G3 * 2.0; protected static final double G33 = G3 * 3.0 - 1.0; private static Grad[] grad3 = {new Grad(1, 1, 0), new Grad(-1, 1, 0), new Grad(1, -1, 0), new Grad(-1, -1, 0), new Grad(1, 0, 1), new Grad(-1, 0, 1), new Grad(1, 0, -1), new Grad(-1, 0, -1), new Grad(0, 1, 1), new Grad(0, -1, 1), new Grad(0, 1, -1), new Grad(0, -1, -1)}; protected final int[] permMod12 = new int[512]; /** * Creates a simplex noise generator. * * @param rand * the PRNG to use */ public SNG(Random rand) { super(rand); for(int i = 0; i < 512; i++) { permMod12[i] = perm[i] % 12; } } public static int floor(double x) { return x > 0 ? (int) x : (int) x - 1; } protected static double dot(Grad g, double x, double y) { return g.x * x + g.y * y; } protected static double dot(Grad g, double x, double y, double z) { return g.x * x + g.y * y + g.z * z; } @Override protected double[] get2dNoise(double[] noise, double x, double z, int sizeX, int sizeY, double scaleX, double scaleY, double amplitude) { int index = 0; for(int i = 0; i < sizeY; i++) { double zin = offsetY + (z + i) * scaleY; for(int j = 0; j < sizeX; j++) { double xin = offsetX + (x + j) * scaleX; noise[index++] += simplex2D(xin, zin) * amplitude; } } return noise; } @Override protected double[] get3dNoise(double[] noise, double x, double y, double z, int sizeX, int sizeY, int sizeZ, double scaleX, double scaleY, double scaleZ, double amplitude) { int index = 0; for(int i = 0; i < sizeZ; i++) { double zin = offsetZ + (z + i) * scaleZ; for(int j = 0; j < sizeX; j++) { double xin = offsetX + (x + j) * scaleX; for(int k = 0; k < sizeY; k++) { double yin = offsetY + (y + k) * scaleY; noise[index++] += simplex3D(xin, yin, zin) * amplitude; } } } return noise; } @Override public double noise(double xin, double yin) { xin += offsetX; yin += offsetY; return simplex2D(xin, yin); } @Override public double noise(double xin, double yin, double zin) { xin += offsetX; yin += offsetY; zin += offsetZ; return simplex3D(xin, yin, zin); } private double simplex2D(double xin, double yin) { // Skew the input space to determine which simplex cell we're in double s = (xin + yin) * F2; // Hairy factor for 2D int i = floor(xin + s); int j = floor(yin + s); double t = (i + j) * G2; double dx0 = i - t; // Unskew the cell origin back to (x,y) space double dy0 = j - t; double x0 = xin - dx0; // The x,y distances from the cell origin double y0 = yin - dy0; // For the 2D case, the simplex shape is an equilateral triangle. // Determine which simplex we are in. int i1; // Offsets for second (middle) corner of simplex in (i,j) coords int j1; if(x0 > y0) { i1 = 1; // lower triangle, XY order: (0,0)->(1,0)->(1,1) j1 = 0; } else { i1 = 0; // upper triangle, YX order: (0,0)->(0,1)->(1,1) j1 = 1; } // A step of (1,0) in (i,j) means a step of (1-c,-c) in (x,y), and // a step of (0,1) in (i,j) means a step of (-c,1-c) in (x,y), where // c = (3-sqrt(3))/6 double x1 = x0 - i1 + G2; // Offsets for middle corner in (x,y) unskewed coords double y1 = y0 - j1 + G2; double x2 = x0 + G22; // Offsets for last corner in (x,y) unskewed coords double y2 = y0 + G22; // Work out the hashed gradient indices of the three simplex corners int ii = i & 255; int jj = j & 255; int gi0 = permMod12[ii + perm[jj]]; int gi1 = permMod12[ii + i1 + perm[jj + j1]]; int gi2 = permMod12[ii + 1 + perm[jj + 1]]; // Calculate the contribution from the three corners double t0 = 0.5 - x0 * x0 - y0 * y0; double n0; if(t0 < 0) { n0 = 0.0; } else { t0 *= t0; n0 = t0 * t0 * dot(grad3[gi0], x0, y0); // (x,y) of grad3 used for 2D gradient } double t1 = 0.5 - x1 * x1 - y1 * y1; double n1; if(t1 < 0) { n1 = 0.0; } else { t1 *= t1; n1 = t1 * t1 * dot(grad3[gi1], x1, y1); } double t2 = 0.5 - x2 * x2 - y2 * y2; double n2; if(t2 < 0) { n2 = 0.0; } else { t2 *= t2; n2 = t2 * t2 * dot(grad3[gi2], x2, y2); } // Add contributions from each corner to get the final noise value. // The result is scaled to return values in the interval [-1,1]. return 70.0 * (n0 + n1 + n2); } private double simplex3D(double xin, double yin, double zin) { // Skew the input space to determine which simplex cell we're in double s = (xin + yin + zin) * F3; // Very nice and simple skew factor for 3D int i = floor(xin + s); int j = floor(yin + s); int k = floor(zin + s); double t = (i + j + k) * G3; double dx0 = i - t; // Unskew the cell origin back to (x,y,z) space double dy0 = j - t; double dz0 = k - t; // For the 3D case, the simplex shape is a slightly irregular tetrahedron. int i1; // Offsets for second corner of simplex in (i,j,k) coords int j1; int k1; int i2; // Offsets for third corner of simplex in (i,j,k) coords int j2; int k2; double x0 = xin - dx0; // The x,y,z distances from the cell origin double y0 = yin - dy0; double z0 = zin - dz0; // Determine which simplex we are in if(x0 >= y0) { if(y0 >= z0) { i1 = 1; // X Y Z order j1 = 0; k1 = 0; i2 = 1; j2 = 1; k2 = 0; } else if(x0 >= z0) { i1 = 1; // X Z Y order j1 = 0; k1 = 0; i2 = 1; j2 = 0; k2 = 1; } else { i1 = 0; // Z X Y order j1 = 0; k1 = 1; i2 = 1; j2 = 0; k2 = 1; } } else { // x0