package com.volmit.iris.util; import java.util.Random; /** * A speed-improved simplex noise algorithm. * *
* Based on example code by Stefan Gustavson (stegu@itn.liu.se). Optimisations * by Peter Eastman (peastman@drizzle.stanford.edu). Better rank ordering method * by Stefan Gustavson in 2012. * *
* This could be sped up even further, but it's useful as is.
*/
public class SNG extends PerlinNoise
{
protected static final double SQRT_3 = 1.7320508075688772; // Math.sqrt(3)
protected static final double F2 = 0.5 * (SQRT_3 - 1);
protected static final double G2 = (3 - SQRT_3) / 6;
protected static final double G22 = G2 * 2.0 - 1;
protected static final double F3 = 1.0 / 3.0;
protected static final double G3 = 1.0 / 6.0;
protected static final double G32 = G3 * 2.0;
protected static final double G33 = G3 * 3.0 - 1.0;
private static Grad[] grad3 = {new Grad(1, 1, 0), new Grad(-1, 1, 0), new Grad(1, -1, 0), new Grad(-1, -1, 0), new Grad(1, 0, 1), new Grad(-1, 0, 1), new Grad(1, 0, -1), new Grad(-1, 0, -1), new Grad(0, 1, 1), new Grad(0, -1, 1), new Grad(0, 1, -1), new Grad(0, -1, -1)};
protected final int[] permMod12 = new int[512];
/**
* Creates a simplex noise generator.
*
* @param rand
* the PRNG to use
*/
public SNG(Random rand)
{
super(rand);
for(int i = 0; i < 512; i++)
{
permMod12[i] = perm[i] % 12;
}
}
public static int floor(double x)
{
return x > 0 ? (int) x : (int) x - 1;
}
protected static double dot(Grad g, double x, double y)
{
return g.x * x + g.y * y;
}
protected static double dot(Grad g, double x, double y, double z)
{
return g.x * x + g.y * y + g.z * z;
}
@Override
protected double[] get2dNoise(double[] noise, double x, double z, int sizeX, int sizeY, double scaleX, double scaleY, double amplitude)
{
int index = 0;
for(int i = 0; i < sizeY; i++)
{
double zin = offsetY + (z + i) * scaleY;
for(int j = 0; j < sizeX; j++)
{
double xin = offsetX + (x + j) * scaleX;
noise[index++] += simplex2D(xin, zin) * amplitude;
}
}
return noise;
}
@Override
protected double[] get3dNoise(double[] noise, double x, double y, double z, int sizeX, int sizeY, int sizeZ, double scaleX, double scaleY, double scaleZ, double amplitude)
{
int index = 0;
for(int i = 0; i < sizeZ; i++)
{
double zin = offsetZ + (z + i) * scaleZ;
for(int j = 0; j < sizeX; j++)
{
double xin = offsetX + (x + j) * scaleX;
for(int k = 0; k < sizeY; k++)
{
double yin = offsetY + (y + k) * scaleY;
noise[index++] += simplex3D(xin, yin, zin) * amplitude;
}
}
}
return noise;
}
@Override
public double noise(double xin, double yin)
{
xin += offsetX;
yin += offsetY;
return simplex2D(xin, yin);
}
@Override
public double noise(double xin, double yin, double zin)
{
xin += offsetX;
yin += offsetY;
zin += offsetZ;
return simplex3D(xin, yin, zin);
}
private double simplex2D(double xin, double yin)
{
// Skew the input space to determine which simplex cell we're in
double s = (xin + yin) * F2; // Hairy factor for 2D
int i = floor(xin + s);
int j = floor(yin + s);
double t = (i + j) * G2;
double dx0 = i - t; // Unskew the cell origin back to (x,y) space
double dy0 = j - t;
double x0 = xin - dx0; // The x,y distances from the cell origin
double y0 = yin - dy0;
// For the 2D case, the simplex shape is an equilateral triangle.
// Determine which simplex we are in.
int i1; // Offsets for second (middle) corner of simplex in (i,j) coords
int j1;
if(x0 > y0)
{
i1 = 1; // lower triangle, XY order: (0,0)->(1,0)->(1,1)
j1 = 0;
}
else
{
i1 = 0; // upper triangle, YX order: (0,0)->(0,1)->(1,1)
j1 = 1;
}
// A step of (1,0) in (i,j) means a step of (1-c,-c) in (x,y), and
// a step of (0,1) in (i,j) means a step of (-c,1-c) in (x,y), where
// c = (3-sqrt(3))/6
double x1 = x0 - i1 + G2; // Offsets for middle corner in (x,y) unskewed coords
double y1 = y0 - j1 + G2;
double x2 = x0 + G22; // Offsets for last corner in (x,y) unskewed coords
double y2 = y0 + G22;
// Work out the hashed gradient indices of the three simplex corners
int ii = i & 255;
int jj = j & 255;
int gi0 = permMod12[ii + perm[jj]];
int gi1 = permMod12[ii + i1 + perm[jj + j1]];
int gi2 = permMod12[ii + 1 + perm[jj + 1]];
// Calculate the contribution from the three corners
double t0 = 0.5 - x0 * x0 - y0 * y0;
double n0;
if(t0 < 0)
{
n0 = 0.0;
}
else
{
t0 *= t0;
n0 = t0 * t0 * dot(grad3[gi0], x0, y0); // (x,y) of grad3 used for 2D gradient
}
double t1 = 0.5 - x1 * x1 - y1 * y1;
double n1;
if(t1 < 0)
{
n1 = 0.0;
}
else
{
t1 *= t1;
n1 = t1 * t1 * dot(grad3[gi1], x1, y1);
}
double t2 = 0.5 - x2 * x2 - y2 * y2;
double n2;
if(t2 < 0)
{
n2 = 0.0;
}
else
{
t2 *= t2;
n2 = t2 * t2 * dot(grad3[gi2], x2, y2);
}
// Add contributions from each corner to get the final noise value.
// The result is scaled to return values in the interval [-1,1].
return 70.0 * (n0 + n1 + n2);
}
private double simplex3D(double xin, double yin, double zin)
{
// Skew the input space to determine which simplex cell we're in
double s = (xin + yin + zin) * F3; // Very nice and simple skew factor for 3D
int i = floor(xin + s);
int j = floor(yin + s);
int k = floor(zin + s);
double t = (i + j + k) * G3;
double dx0 = i - t; // Unskew the cell origin back to (x,y,z) space
double dy0 = j - t;
double dz0 = k - t;
// For the 3D case, the simplex shape is a slightly irregular tetrahedron.
int i1; // Offsets for second corner of simplex in (i,j,k) coords
int j1;
int k1;
int i2; // Offsets for third corner of simplex in (i,j,k) coords
int j2;
int k2;
double x0 = xin - dx0; // The x,y,z distances from the cell origin
double y0 = yin - dy0;
double z0 = zin - dz0;
// Determine which simplex we are in
if(x0 >= y0)
{
if(y0 >= z0)
{
i1 = 1; // X Y Z order
j1 = 0;
k1 = 0;
i2 = 1;
j2 = 1;
k2 = 0;
}
else if(x0 >= z0)
{
i1 = 1; // X Z Y order
j1 = 0;
k1 = 0;
i2 = 1;
j2 = 0;
k2 = 1;
}
else
{
i1 = 0; // Z X Y order
j1 = 0;
k1 = 1;
i2 = 1;
j2 = 0;
k2 = 1;
}
}
else
{ // x0